Function | Calculation |
---|---|
SECANT | |
SEC(X)=1/COS(X) | |
COSECANT | |
CSC(X)=1/SIN(X) | |
COTANGENT | |
COT(X)=1/TAN(X) | |
Inverse SECANT | |
ARCSEC(X)=ACS(1/X) | |
Inverse COSECANT | |
ARCCSC(X)=ASN(1/X) | |
Inverse COTANGENT | |
ARCCOT(X)=ATN(1/X) =PI/2-ATN(X) | |
Hyperbolic SINE | |
SINH(X)=(EXP(X)-EXP(-X))/2 | |
Hyperbolic COSINE | |
COSH(X)=(EXP(X)+EXP(-X))/2 | |
Hyperbolic TANGENT | |
TANH(X)=EXP(-X)/(EXP(X)+EXP(-X))*2+1 | |
Hyperbolic SECANT | |
SECH(X)=2/(EXP(X)+EXP(-X)) | |
Hyperbolic COSECANT | |
CSCH(X)=2/(EXP(X)-EXP(-X)) | |
Hyperbolic COTANGENT | |
COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1 | |
Inverse Hyperbolic SIN | |
ARCSINH(X)=LN(X+SQR(X*X+1)) | |
Inverse Hyperbolic COSINE | |
ARCCOSH(X)=LN(X+SQR(X*X-1)) | |
Inverse Hyperbolic TANGENT | |
ARCTANH(X)=LN((1+X)/(1-X))/2 | |
Inverse Hyperbolic SECANT | |
ARCSECH(X)=LN((SQR(-X*X+1)+1)/X) | |
Inverse Hyperbolic COSECANT | |
ARCCSCH(X)=LN((SGN(X)*SQR(X*X+1)+1)/X | |
Inverse Hyperbolic COTANGENT | |
ARCCOTH(X)=LN((X+1)/(X-1))/2 | |
LOGn(X) | |
LOGn(X)=LN(X)/LN(n) =LOG(X)/LOG(n) |
CONTENTS |
CONTINUE |