
This driver enables easy implementation of the Am9511 as a coprocessor in Intel

8085-based systems.

An Efficient Software Driver

Processor Implementation

Borivoje Furht, University of Miami

Peter Lee, IBM, Corp.

An arithmetic processor unit interfaced to a host
microprocessor system as a coprocessor significantly

improves system performance, performing both a variety
of fixed and floating point arithmetic operations and
trigonometric and mathematical operations. An efficient
software driver has been developed that enables easy
implementation of the arithmetic processor unit (an
Am95 11 or Intel 823 1A) in a concurrent operation with a
host microprocessor (e.g., Intel 8085).

Basic hardware configuration

The Am9511 arithmetic processing unit can be inter-
faced to an Intel 8085/8086 host microprocessor just as
any programmable I/O unit can. All transfers between the
microprocessor and the arithmetic processing unit are per-
formed using an 8-bit directional data bus. Transfers to
and from the APU are handled by using a conventional
programmed I/O technique. To provide I/O mapped I/O
an 8205 decoder is used to get the chip select to the APU
with IO/M signal equal 1. The signals RD and WR are
tied directly to the APU. Since the upper address lines
(A8 -A 15 ) are non-multiplexed, they are used for selection
of the APU. This technique relies on the fact that the I/O
port number is copied onto A 8 -A 15 as well as A0-A 7 dur-
ing an input or output instruction. The basic hardware in-
terface scheme is shown in Figure 1.

The signal PAUSE from the APU is tied to the READY
line of the 8085 to avoid data loss. This line is high in its in-
itial state and is pulled low by the APU under the follow-
ing conditions:

* A previously initiated operation of the APU is in
progress and a command entry is attempted.

* A previously initiated operation of the APU is in pro-
gress and stack access has been attempted.

* The APU is not busy and data removal or data entry
has been requested.

Am9511 operation

The Am9511 APU operation is based on commands
supplied by a host microprocessor. Each command
represents a single 8-bit datum, shown in Figure 2.

* Bits 0-4 select the operation of the APU.
* Bits 5-6 select the data format for the operation. If bit

5 = 1, then a fixed-point datum is specified. If bit
5 = 0, floating-point format is specified. Bit 6 selects
the precision of the data. If bit 6 = 1 single precision
(16 bits) is selected, while bit 6 = 0 selects double
precision (32 bits).

* Bit 7 indicates whether a service request is to be issued
after the command is executed. If bit 7 = 1, a service
request will be generated; if bit 7 = 0, a service re-
quest will not be generated.

0272-1732/84/0600-0007$01.00 ( 1984 IEEEJune 1984 7



Figure 1. Basic hardware interface.

7 6 5 4 3 2 1 0

[ SR |SINGLE FIXED Il l l

i
OPERATION CODE

Figure 2. Command format.

A summary of the APU commands is given in Table 1.
(In Table 1, TOS means top of stack and NOS means next
of stack. In the hex-code column, SVREQ is a 0.

The Am951 1 APU is a stack-oriented processor, so the
host processor has access to an eight-level, 16-bit-wide
data stack. Single-precision fLxed-point operands are 16
bits wide, so eight such values may be stored in the stack
(Figure 3a). When the data are double-precision fixed-
point or floating-point operands (32 bits), the four values
may be stored (Figure 3b). Data are written into the stack
byte after byte, in the order shown in Figure 3 (B1, B2,
B3, . . . ). Data are removed from the stack in reverse

order (B8, B7, B6, . . . ).

Figure 3. Structure of the APU's stack: (a) single-precision fixed-point operands; (b) double-precision fixed-point or floating point
operands.

I/O ADDRESSES

16H AND 17H

TOS B4 B3 4 TOS- B8 B7 B6 B5

NOS B2 B1 NOS- ~ B4 B3 B2 B1
______ < 8B5OS<4 X 4 BYTES

8 BYTES
II I____ ____ ___

411 32 BITS oI

(a) - BISI - I I
Ia|<- 16 BITS I b

1-1 A--I-v -w- -w- N

IEEE MIC:RO8



Execution times

Timing for execution of the Am9511 commands is
shown in Table 2. Speeds are given in terms of clock cycles
and can be converted to microseconds by multiplying by
the clock period used. Maximum clock frequency for the
Am9511 is 2 MHz and for the Am951-1 is 3 MHz. One
version of the Intel 8231A is faster (4 MHz).

Interface strategies

Two different interface techniques have been applied:
pseudopolling and interrupt-driven interfaces.

Pseudopolling interface technique. In this mode of
operation the host processor sends one command after
another to the APU using a standard output operation.
Since a previously initiated operation will usually be in
progress when a new command entry is attempted, the
APU will pull the PAUSE line low, causing the host pro-
cessor to skip into a waiting state. The PAUSE line will re-

main low until completion of the current command execu-

tion. It will then go high, permitting entry of the new com-
mand.

The software driver for the pseudopolling mode of
operation (SDPPM) is simple and consists of a set of
subroutines that send commands to the APU, have access
to the APU stack, and remove/enter data from/to the

Table 1.
Command summary.

COMMAND DESCRIPTION
FIXED POINT 16 BIT
Add TOS to NOS. Result to NOS. Pop Stack.
Subtract TOS from NOS. Result to NOS. Pop Stack.
Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
Multiply NOS ty TOS. Upper half of result to NOS. Pop Stack.
Divide NOS by TOS. Result to NOS. Pop Stack.
FIXED POINT 32 BIT
Add TOS to NOS. Result to NOS. Pop Stack.
Subtract TOS from NOS. Result to NOS. Pop Stack.
Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
Multiply NOS by TOS. Upper half of result to NOS. Pop Stack.
Divide NOS by TOS. Result to NOS. Pop Stack.
FLOATING POINT 32 BIT
Add TOS to NOS. Result to NOS. Pop Stack.
Subtract TOS from NOS. Result to NOS. Pop Stack.
Multiply NOS by TOS. Result to NOS. Pop Stack.
Divide NOS by TOS. Result to NOS. Pop Stack.
DERIVED FLOATING POINT FUNCTIONS
Square Root of TOS. Result in TOS.
Sine of TOS. Result in TOS.
Cosine of TOS. Result in TOS.
Tangent of TOS. Result in TOS.
Inverse Sine of TOS. Result in TOS.
Inverse Cosine of TOS. Result in TOS.
Inverse Tangent of TOS. Result in TOS.
Common Logarithm (base 10) of TOS. Result in TOS.
Natural Logarithm (base e) of TOS. Result in TOS.
Exponential (ex) of TOS. Result in TOS.
NOS raised,to the power in TOS. Result in NOS. Pop Stack.
DATA MANIPULATION DEMANDS
No Operation
Convert TOS from floating point to 16-bit fixed-point format.
Convert TOS from floating point to 32-bit fixed-point format.
Convert TOS from 1 6-bit fixed-point to floating-point format.
Convert TOS from 32-bit fixed-point to floating-point format.
Change sign of 16-bit fixed-point operand on TOS.
Change sign of 32-bit fixed-point operand on TOS.
Change sign of floating-point operand on TOS.
Push 16-bit fixed-point operand on TOS to NOS (Copy).
Push 32-bit fixed-point operand on TOS to NOS (Copy)
Push floating-point operand on TOS to NOS (Copy).
Pop 16-bit fixed-point operand from TOS. NOS becomes TOS.
Pop 32-bit fixed-point operand from TOS. NOS becomes TOS.
Pop floating-point operand from TOS. NOS becomes TOS.
Exchange 16-bit fixed-point operands TOS and NOS.
Exchange 32-bit fixed-point operands TOS and NOS.
Exchange floating-point operands TOS and NOS.
Push floating-point constant " 7r" onto TOS. Previous TOS becomes NOS.

HEX
COMMAND CODE

6C
6D
6E
7C
6F

2C
2D
2E
3C
2F

10
11
12
13

01
02
03
04
05
06
07
08
09
OA
OB

00
1F
1E
1D
1c
74
34
15
77
37
17
78
08
38
39
39
19
1A

June198 9

COMMAND
MNEMONIC

SADD
SSUB
SMUL
SMUU
SDIV

DADD
DSUB
DMUL
DMUU
DDIV

FADD
FSUB
FMUL
FDIV

SQRT
SIN
COS
TAN
ASIN
ACOS
ATAN
LOG
LN
EXP
PWR

NOP
FIXS
FIXD
FLTS
FLTD
CHSS
CHSD
CHSF
PTOS
PTOD
PTOF
POPS
POPD
POPF
XCHS
XCHD
XCHF
PUPI

June 1984 9



Table 2.
Command execution times.

COMMAND
MNEMONIC
SADD
SSUB
SMUL
SMUU
SDIV
DADD
DSUB
DMUL
DMUU
DDIV
FIXS
FIXD
FLTS
FLTD
FADD
FSUB
FMUL
FDIV
PTOS
PTOD
PTOF
POPS
POPD

CLOCK
CYCLES

17
30

84-94
80-98
84-94
21
38

194-210
182-218
208

92-216
100-346
98- 186
98-378
54-368
70-370
146-168
154-184

16
20
20
10
12

COMMAND
MNEMONIC
SORT
SIN
COS

TAN
ASIN
ACOS
ATAN
LOG

LN
EXP
PWR

NOP
CHSS
CHSD
CHSF
POPF
XCH S
XCH D
XCH F
PUPI

CLOCK
CYCLES

800
4464
4118

5754
7668
7734
6006

4474-7132

4298-6956
3794-4876
8290-12032

4
23
27
18
12
18
26
26
16

APU stack. The software driver SDPPM, written in
assembly language for the 8085, requires 256 bytes of
memory.
A typical command routine for floating point

multiplication is shown below:

FMUL: MVI A, 12H ; Code for multiplication
OUT 17H ; Send command to the APU
RET

A typical entry routine ENT16 for entering a 16-bit
value into the APU stack has the following form:

ENT16: MOVA,M
OUT 16H
INX H
MOV A, M
OUT 16
RET

; Enter low byte
; Increment pointer

; Enter high byte

Before calling a routine for data entry/removal, the user

should load the register pair H&L with the address of data.
The user program is a simple sequence of CALL instruc-

tions to the corresponding APU routines.

Example 1. The following example illustrates the im-
plementation of the SDPPM by a user program. Suppose
the following computation should be performed as

y = x-sinx

where x is a 16-bit integer.

Here is an efficient way to perform the desired function:
* Load the 16-bit integer value of x in the APU.
* Execute APU instruction FLTS to convert to floating

point.

10

* Execute APU instruction PTOF to duplicate the
result of the floating-point conversion.

* Execute APU instruction SIN to replace the value of
x at the top of the stack with its sine.

* Execute APU instruction FMUL to compute x* sinx.
* Execute APU instruction SQRT to compute square

root of x* sinx.
* Finally, remove the result from the APU stack.
The user program that performs the computation of y is

the following sequence of CALL instructions:

LXI H, XDATA
CALL ENT16
CALL FLTS
CALL PTOF
CALL SIN
CALL FMUL
CALL SQRT
LXI H, YDATA
CALL REM32

;Pointer to x
;Load 16-bit data into the APU
;Convert to floating point
;Duplicate x
;Sin(x)
;x sin(x)
;Square root of x* sin(x)
;Pointer to y
;Remove 32-bit result from the
APU

The execution time analysis of the given example is shown
in Figure 4.
As can be seen from Figure 4, the microprocessor is in a

waiting state during the operation of the APU, so a concur-
rent operation of the ytP and the APU is not realized.

Interrupt interface technique. In this mode of operation,
the signal END, generated by the APU, is used to activate an
interrupt service routine in the uP.
The host microprocessor, after preparing a set of com-

mands and the corresponding data for the APU, is able to
continue the execution of its own program.

In order to enable a concurrent operation of the yP and
the APU, the following strategy, consisting oftwo steps, has
been implemented. First, the user commands to the APU,
given in a form of macroinstructions, are not executed
directly but are temporarily stored in a command buffer in
RAM. Also, the corresponding data are not entered directly
onto theAPU stack, but its addresses-pointers to the data are
temporarily stored into a pointer buffer in RAM. The com-
mand buffer is 20 bytes long, so the user can write an opera-
tion consisting of a maximum of 20 APU commands. The
data buffer is 10 bytes long, so five 16-bit pointers to the data
can be stored in it.

In the second step, at the end of a macro sequence, the user
activates an interrupt service routine by using a CALL in-
struction. The interrupt service routine coordinates the ex-
ecution of the commands previously stored in the command
buffer. Upon completion of each command from the com-
mand buffer, the APU will issue an "end of execution
signal" that will again activate the interrupt service routine.
Then the ISR will send the next command from the com-
mand buffer to the APU.

Software driver for the interrupt mode. In defining soft-
ware requirements for an APU software driver for the inter-
rupt mode of operation (SDIM), the main objectives were

* to make the use of the Am951 1 easy, efficient, and flex-
ible from the user's point of view, and

* to provide a concurrent operation of the host yP and
the APU.

IEEE MICRO



Figure 4. Execution time analysis: pseudopolling technique.

The designed software-driver SDIM consists of a set of
macro definitions that perform all necessary data/com-
mand preparation and an interrupt service routine that
coordinates commands execution.

Da t/resloval macros. There are two data-entry
and two data-removal macroinstructions that initialize

16-and 32-bit data transfer. These macroinstructions store
the pointers to the data into the pointer buffer and an in-
tenal code for the corresponding command (entry or

removal) into the command buffer.
For example, macroins tion ENT16 DATAX stores

the pointer to the data, with a symbolic address DATAX,
into the pointer buffer, and the command 40H, that cor-

responds to 16-bit data-entry into the command buffer.
The macro definition for ENT16 has the following for-
mat:

ENT16 MACRO DATA
LXI D, DATA
MOV M, E
INX H
MOV M, D
INX H
MVI A, 40H
STAX B
INX B
ENDM

;Pointer to the data. . .

;... store into the PB
;Code store into ...

;...the CB

The internal codes for the entry/removal instuctions are

as follows:
I -" Hex Code
ENT16 40

ENT32
REM16
REM32

41
50
51

pairs HL and BC ae used as the points to the

buffer and the buffer,
order to l any sequece of theAPU as, the
user has to set these to the top ofthe buffer

and the buffer by the IN-

IT at the beinning of an APUJ sequce. Also, the macro
INlTcl_arshecmmabufferandthepoinlerbufer. lTe
macro definitin INIT has the f fomat:

INIT MACRO
LTX
MVI
XRA

LOOPl: MOV
INX

JNZ
LXI

MVI
LOOP2 SrAX

INX
INR
JNZ
LXI

PBUF,CBUF
H,PBUF
D,10
A
M,A
H
D
LOOPI
B,CBUF

D,20
B
B
D
LOOP2
H,PBUF

;Gear the point buffer

;Car the d

buffer

;Pointer to the top of
the pointer buffer

LXI B,CBUF ;Pointer to the top of
the co buffer

ENDM

June 1984

RUN

WAITF

RUN

MP ENT16 ~~~~~~~~~~~~~~~~~~REM32I

WAIT I

17 35 I91719a 1488 19 5019 266 1181

TIME (ys)

4

11



Comman_ entry aros. There are 42 command entry
macro definitions that store the corresponding hex code
(see Table 1) into the next available location of the com-
mand buffer and then increment the pointer to the com-
mand buffer. For example, macro definition FMUL for
floating-point multiplications has the following format:

FMUL MACRO
MVI A,92H; Code for multiplication
STAX B ;Store code into the

command buffer
INX B ; Increment pointer to

the command buffer
ENDM

All the other APU commands have the same structure
of macro definition.

Interrupt sermiceroutine. The interrupt service routine
coordinates the execution of the commands previously
stored in the command buffer. The ISR also accomplishes
data entry onto theAPU stack and data-removal from the
APU stack, using the pointers to the data previously
stored in the pointer buffer. The current pointer to the
data is always stored at the top of the pointer buffer, and
the current command code is always stored at the top of
the command buffer. After compltion of a data entry,
the current pointer will be removed and the next pointer
from the pointer buffer will be shifted to the top of the
pointer buffer. Similarly, after completion of a command
entry to the APU, the command code from the command
buffer will be shifted to the top of the command buffer.
This avoids the necessity of saving pointers of the pointer
buffer and the comnd buffer.
The flowchart of the ISR is shown in Figure 5, and the

corresponing program is given in theappendix. When the
last commad from an APU sequence has been com-
pleted, the ISR will set an "end oftheAPU sequence" flag
in order to infonn the main program of the competion of
the wholeAPU operation. This flag can be at any locaton
in memory. In the designated SDIM the flag is at the top
location of the pointer buffer.

Example 2. In order to illustrate the implementation of
the SDIM, consider the same ex on y = 4sinx
given in Example 1. The user program is a sequence of
macro references given below. At the beginning the user
should reserve nemory locations for the pointer buffer
and command buffer.

; Memory reservation
PBUF: DS 10 ; Pointer buffer
CBIF: DS 20 ; Command buffer
X: DS 2 ; 16-bit data
Y: DS 4 ; 32-bit result

; The APU sequence y= square root(x-sinx)
START: INIT ; Initialiion

ENTI6 X ; Enter 16-bit data
ELTS ; Convert to floating-

point
PTOF ; Duplicate X
SIN ; Sinx

FMUL
SQRT
REM32
CALL ISR

: x*sin x
; Square root of x-sin
; Remove 32-bit data
; Call interrupt service

routine
; to activate the APU

operation
After execution of the whole sequence of macroinstruc-

tions, the APU is not yet activated; however, the pointer
buffer contains the pointers to the data x and y, and the
command buffer contains the codes ofthe usedAPU com-
mands, as shown in Figure 6.

In order to compare the described interrupt-interface
technique and the pseudopolling technique, the execution
time analysis for Example 2 is shown in Figure 7.

It is obvious from Figure 7 that the microprocessor is
never in a waiting state, so the microprocessor and the
APU operate concurrently. After preparing a set ofAPU
commands and the corresponding data in the command
buffer and the pointer buffer, the host microprocessor is
able to continue the execution of its own program.

In the case when microprocessor program needs a result
from a previously activated APU sequence, it can test the
"end of theAPU sequence" flag set by the ISR at the end
of an APU sequence.

APU Implementation in a multimicro-
processor system

In recent years the cost of microprocessor components
has been reduced, so the concept ofapplying multiple pro-
cessors to achieve better system performance, previously
avoided, has now become an attractive and feasible design
strategy. Since the cost of an APU is still high, however,
including more than one APU in an MMP system would
be very expensive.

In this section we propose anMMP configuration with
multipl processors that share a single APU. The APU
software driver described can be used in this MMP system.
A multiple master/dual bus multimicroprocessor ar-

chitecture has been applied and described by Adams and
Rolander.4 Each processor-master has its own private
memory and I/O. Access to the common bus occurs only
when a master requires access to the common memory or
common I/O. A paallel bus priority technique has been
used which enables up to eight masters to run concurrent-
ly. The control logic for the common bus access was
designed using an Intel 8219 bus-controller.
An Am95l 1 APU is a common I/O unit shared by all

processors. The corresponding APU software drivers are
the same for all processors and stored in their local
memories. When a master requires an APU operation, it
executes the corresponding APU driver from its local
memory and activates the APU.

After completing a single operation, the APU sends an
interrupt signal to the corresponding master.
The architecture ofanMMP system with commonAPU

is shown in Figure 8. Note that there needs to be additional
logic to allow each processor select to either the local or
common bus. Showing the details of the selection would
make the figure complicated, so they are omitted.

IEEE MICRO12



Figure 5. The interrupt service routine.

Two problems have to be solved in the MMP configura- without interruption. This critical sequence has been con-
tion. The first problem is mutual exclusion. It is necessary trolled by using the hardware/software solution described
to assure that a master will have uninterrupted access to below. The second problem is the interrupt signal, sent by
the APU. Therefore, a critical section of code has been in- the APU after cortipletion of its operation, that is interfac-
troduced which, once begun, must complete its execution ed to all the masters (Figure 8). In order to cause the ac-

June 1984 13



- POINTER TO X

POINTER TO Y

0

1 ~~~0

0

COMMAND

BUFFER

40

90

B7

82

92

81

51

0

0

0

0

Figure & The contents of the pointer buffer and the command buffer in Example 2.

Figure 7. Execution time analysis: interrupt technique.

IEEE MICRO

RUN

APU

WAIT

RUN ISR

MP

RUN

WAIT

TIME (uAs)

POINTER

BUF.R
ENT16

'FLTS

PTOD

SIN

FMUL

SORT

REM32

14



Figure 8. Multimicroprocessor system with a common APU.

tivation of the interrupt routine in the master which had
activated the APU, a software interrupt-mask technique
should be used.
The software driver SDIM, described in the previous

section, can be easily extended in order to be used in the
proposed MMP system with a common APU. First, a sub-
routine TEST (see Figure 9) is introduced into the driver

that controls the critical section of code and that solves the
mutual exclusion problem. The routine TEST should be
called by the user program after the preparation of the
commands has been completed and before the execution
of the ISR.
Mutual exclusion is controlled by an "APU busy flag"

in the common RAM memory set by the processor which

June 1984 15



Figure 9. The routine TEST that controls the critical sec.
tion of code.

uses the APU, and using a hardware signal "Override"
generated by the microprocessor through an output port.
The override signal temporarily locks the access of the
other processors to the common bus.

Finally, the APU interrupt routine ICR should also be
modified in order to be applied in the MMP system. The
"APU busy" flag should be set at the beginning of the
ISR, and the same bit should be reset at the end of anAPU
sequence. At the same time, the interrupt mask for 7.5
should be set in order to disable the activation of the ISR in
the processor.

Example 3. A simple example illustrates the implemen-
tation of the described software driver in an MMP system
in which two microprocessors share an APU.

Suppose that processor 1 (P1) should perform the
following operation:

x = a*b

while processor 2 (P2) performs the following operation:

y = c*d

The user programs, stored in the local memories of P1
and P2, are as follows:

PROCESSOR
INIT
ENT16
FLTS
PLTD
ENT16
FLTS
FMUL
REM32
CALL
CALL

1 PROCESSOR
INIT

A ENT16
FLTS
PLTD

B ENT16
FLTS
FADD

X REM32
TEST CALL
ISR CALL

2

C

D

y
TEST
ISR

Each microprocessor can be in one of the three possible
states:

* running state (RUN), executing its main program;
* ISR-state, executing its interrupt APU service

routine;
* waiting state, when the APU is busy executing an
APU sequence of another processor.

The APU itself can be in either RUN or WAIT state.
The timing diagram, shown in Figure 10, illustrates the
operation of two processors that share an APU.

* Suppose that at time t I processor 1 starts the execu-
tion of an APU sequence, preparing the commands
and the data.

* At time t2, PI has completed the execution of its
macro sequence, storing all necessary commands and
data into its command and pointer buffer, respective-
ly. It executes the routine TEST and, since theAPU is
not busy, it starts the execution of the APU com-
mands. Because of the use of this mutual exclusion
technique, the access to the APU is inhibited for the
other processors (in this example, for processor 2).

* At time t3 processor 2 also starts the execution of its
APU sequence, preparing the corresponding com-
mands and data.

* At time t4, P2 starts the execution of its TEST
routine, testing the "APU busy" flag in the common
memory. Since the APU is still busy executing the se-
quence of P1, P2 starts the execution of a waiting
loop, shown in Figure 9.

* At time t5, the APU operation of P1 has been com-
pleted, so the ISR of P1 will clear the "APU busy"
flag in the CM. P2, which was in a waiting loop
testing this flag, will obtain an access to the APU and
will start the execution of its APU sequence.

This analysis can be extended to the case when several
processors share an APU.

The APU software driver in a high-level
language environment

The APU software driver SDPPM can be easily
modified and used in a high-level language environment.

Intel's 8085 Floating-Point Arithmetic Library contains
basic floating-point subroutines and functions referred to
as procedures.6 The FPAL can be used by assembly
language or PL/M programs.

IEEE MICRO16



RUN

Figure 10. Timing diagram-MMP system.

We have implemented the same strategy in designing an

APU software driver to a high-level language, or SDHLL.
A set of the procedures has been designed that use the
APU to perform the arithmetic operations, instead of
doing this by software routines. From the user's point of
view, the APU is invisible and the use of the SDHLL
routines in a PL/M program is the same as the use of the
FPAL routines.

In general, the following steps should be observed to use

the SDHLL:

* An area of memory must be reserved for the floating-
point record.

* The names of the SDHLL procedures the user plans
to use must be declared to be "external" using the
EXTERNAL attribute in PL/M-80.

* The SDHLL procedure references must be embedded
in the user's source code where appropriate.

* The SDHLL procedure used by user's program

should be linked to the user's object file.

Example 4. The following PL/M example computes the
function

F = A*B+C

where A, B, and C represent addresses of the floating-
point numbers. F is the address where the result is to be
stored, and FPR is the address of the floating-point
register.

We must first declare the SDHLL procedures used to be
external and reserve the FPR memory as an array. The
PL/M program is given below:

/* EXAMPLE 4 - F = A * B + C */

/* -/
/* DEFINE EXTERNAL PROCEDURES */

FSET: PROCEDURE (FA,OPl,OP2) EXTERNAL;
DECLARE (FA,OPl,OP2) ADDRESS;

END FSET;
FADD: PROCEDURE (FA,OA) EXTERNAL;

DECLARE (FA,OA) ADDRESS;
END FADD;
FMUL: PROCEDURE (FA,OA) EXTERNAL;

DECLARE (FA,OA) ADDRESS;
END FMUL;
FLOAD: PROCEDURE (FA,OA) EXTERNAL;

DECLARE (FA,OA) ADDRESS;
END FLOAD;
FSTOR: PROCEDURE (FA,OA) EXTERNAL;

DECLARE (FA,OA) ADDRESS;
END FSTOR;

/* DECLARE BYTE ARRAYS */

DECLARE FPR(18) BYTE,
A(4) BYTE,
B(4) BYTE,
C(4) BYTE,
F(4) BYTE;

June 1984

APU

WAIT

ISR

P1 RUN

WAIT

ISR

P2 RUN

WAIT

T213TME(T2 T3 TIME (ps)

17



Table 3.
Execution times: SDHLL vs. FPAL.

AVERAGE EXECUTION
TIME (MICROSECONDS)

PROCEDURE FPAL SDHLL
FADD 700 30
FSUB 800 35
FMUL 1500 50
FDIV 3700 57

/* COMPUTATION OF F = A*B + C*/
/* FSET SHOULD BE CALLED FIRST */

CALL FSET(.FPR,0,0); /*Initializa-
tion of
FPR*/

CALL FLOAD (.FPR,.A); /*Load data
A*/

CALL FMUL (.FPR,.B); /*Multiply A
and B*/

CALL FADD (.FPR,.C); /*Compute
A*B* + C*/

CALL STOR (.FPR,.F); /*Store
result in F*/

The SDPPM driver can be modified in order to be con-
sistent to the existing FPAL librar.y package. A detailed

description of the SDHLL is given by Furht and Milutino-
.7.Vic.7
The existing PL/M programs, which use the FPAL

routines, can implement the SDHLL routines without any
change. In general, the only change occurs during the link-
ing process. When the user has completed program
development, he should link the SDHLL, instead of the
FPAL, to his object modules.

It is obvious that execution speeds of SDHLL pro-
cedures are much faster than those of the corresponding
FPAL procedures. Table 3 gives a brief comparison of the
execution speeds of some commonly used procedures. The
microprocessor clock frequency is supposed to be 6MHz
and the APU clock frequency is 3MHz.

These software drivers enable easy and efficient APU
implementation both in single microprocessor

systems and in a multimicroprocessor system with a com-
mon APU. Two different interface techniques have been
used: pseudopolling and interrupt techniques. The cor-
responding APU drivers have been developed-the
SDPPM and the SDIM, respectively. The SDPPM can be
modified for use in a high-level language environment.
Using the APU driver, the user can focus attention on the
problem by simply calling a set of macroinstructions or
"CALL procedures" to activate the APU functions.
The APU software driver could be included in a com-

piler for a language such as PL/M, Pascal, or Ada.-

Appendix: The Interrupt service routine of the SDIM

INTERRUPT SERVICE ROUTINE FOR SDIM
-RST 7.5

First activation: CALL instruction from the main
program at the end of an APU
sequence.

Next activation: Interrupt signal END whenever
a single APU operation has been
completed.

Function: Send a new command/data to
the APU using the top of
command/pointer buffers.

APU addresses: 16H - Enter/read byte into/from
the APU.
17H - Enter command/ read
status

ISR: PUSH
PUSH
PUSH
PUSH

ISRO:

ISRI:

PSW
B
D
H

; Save registers

LDA CBUF ; Load next
command from
the CB

MOV B,A ; Save command
in B

LXI H,CBUF ; Pointer to the
top of the CB

LXI D,CBUF +1 ; Pointer to next
address

LDAX D ; Shift codes in
the CB ...

MOV M,A
ORA A

Jz
INX
INX
JMP

ISR2
H
D
ISRI

ISR2: MOV A,B

ANI OFOH

CPI 40H
JZ ISR3

CPI 50H
JZ ISR6

; Command entry to the APU
MOV A,B

OUT 17H

El

JMP ISR9

; Data entry to the APU
ISR3: LHLD PBUF

MOV
OUT
INX

A,M
16H
H

MOV A,M

. . . to the top
until 0 code is
found
Restore current
command code
Mask most
significant 4
bits

Test if data
entry command

Test if data
removal
command

Restore
command code
Send to the
APU
Enable
interrupt
Jump to the
end

Address of the
first byte
Send 1. byte

Address of the
second byte
Send 2. byte

IEEE MICRO18



OUT 16H
MOV A,B

CPI 41H
JNZ ISR5
INX H

MOV
OUT
INX

MOV
OUT

ISR5: LXI

LXI

ISR5A: LDAX
STAX
MOV

INX
INX
LDAX
STAX
INX
INX
ORA

A,M
16H
H

A,M
16H
B,CBUF

D,CBUF + 2

D
B
L,A

D
B
D
B
D
B
L

JNZ ISR5A
JMP ISRO

Data removal from the APU
ISR6: LHLD PBUF

MOV A,B

CPI 51H
JZ ISR7
INX H

IN
MOV
DCX
IN
MOV
JMP

ISR7: INX
INX
INX

IN
MOV
DCX
IN
MOV
DCX
IN
MOV
DCX
IN
MOV

ISR8: MVI

16H
M,A
H
16H
M,A
ISR8
H
H
H

16H
M,A
H
16H
M,A
H
16H
M,A
H
16H
M,A
A,J

STA PBUF

Restore
command code

If 16-bit data
Address of the
third byte
Send 3. byte

Address of the
third byte
Send 3. byte

Shift pointers
in the PB ...

... to the top
until 0 pointer
is found

LSB of the
address being
moved

MSB address is
currently in A

Jump to "Load
next
command"

stack in reverse order
Address of the
result in HL
Restore
command word

If 32-bit result
End of the
16-bit data
buffer

Store 1. byte

Store 2. byte

End of 32-bit
data buffer

Store 1. byte

Store 2. byte

Store 3. byte

Store 4. byte
Set flag "End
of APU
operation"

ISR9: POP

POP
POP
POP
RET

H

D
B
PSW

; Restore
registers

References

1. "Am9511 Arithmetic Processor Unit," data sheet, Ad-
vanced Micro Devices, Inc., Sunnyvale, CA, Mar. 1978.

2. B. K. Gupta, "Arithmetic Processor Chips Enhance Micro-
processor Performance," Computer Design, Vol. 19, No. 7,
July 1980, pp. 85-94.

3. E. B. Croson, F. H. Carlin, and J. A. Howard, "Integrated
Arithmetic Processing Unit Enhances Processor Execution
Times," Computer Design, Vol. 20, No. 4, Apr. 1981, pp.
163-171.

4. G. Adams and T. Rolander, "Design Motivations for
Multiple Processor Microcomputer Systems," Computer
Design, Vol. 17, No. 3, Mar. 1978.

5. R. 0. Parker and J. H. Kroeger, "Algorithm Details for the
Am9511 Arithmetic Processing Unit," Pub. No. AM-
PUB072, Advanced Micro Devices, Inc., Sunnyvale, CA,
1978.

6. 8085/8085 Floating-Point Arithmetic Library User's
Manual, Pub. No. 9800452B, Intel Corp., Santa Clara, CA,
1977.

7. B. Furht and V. Milutinovic, "The Am9511 Arithmetic
Processor Implementation in a High-Level Language En-
vironment," in progress.

Borivoje Furht is an associate professor in
the Electrical and Computer Engineering
Department of the University of Miami,
Coral Gables. From 1970 to 1981, he was
with the Computer System Division of the
Institute "Boris Kidric" -Vinca, Yugo-
slavia, where he was a project leader in
designing specialized microprocessor-based

-V, - systems and their application in tele-
communication and control. Since 1982, he

has been an assistant professor of electrical and computer
engineering at the University of Miami. He has done research in
computer architecture, multi-microprocessor systems, supercom-
puters, and software engineering. He is currently designing a
super microcomputer used in image and signal processing.

Furht is the author of more than 40 technical papers and ar-
ticles, about 30 technical reports, and two books. He is a member
of IEEE and its Computer Society and a member of the Editorial
Board of the International Journal ofMini andMicrocomputers.
He received the BSc, MSc, and PhD degrees in electrical and com-
puter engineering from the University of Belgrade, Yugoslavia, in
1970, 1973, and 1978, respectively.

Furht's address is Department of Electrical and Computer
Engineering, University of Miami, P.O. Box 248294, Coral
Gables, Florida 33124.

Peter Lee is a member of the technical staff
at IBM in Boca Raton, Florida, involved in
design and development of advanced com-

41 puters. Earlier he was on the technical staff
gO _ at Gould, Inc, SEL. He received his BSEE

in 1980 and MSEE in 1982 from the Univer-
sity of Miami.

Lee's address is IBM, Computer Systems
Division, 2000 51st Street, Boca Raton,
Florida 33431.

June 1984 19


