<|lli

IBM VisualAge TeamConnection

lToolbuilder’s Development Guide

Version 2.0

SC34-4553-00

<|lli

IBM VisualAge TeamConnection

lToolbuilder’s Development Guide

Version 2.0

SC34-4553-00

Second Edition (January 1998)

Note
FBefore using this document, read the general information under tNatices” on page i,

This edition applies to Version 2.0 of the licensed program IBM TeamConnection and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Order publications by phone or fax. The IBM Software Manufacturing Company takes publication orders between
8:30 a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is
(800) 284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, address your comments
to:

IBM Corporation

Attn: Information Development

Department T99B/Building 062

P.O. Box 12195

Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-0206.
If you have comments about the product, address them to:

IBM Corporation

Attn: Department THO/Building 062

P.O. Box 12195

Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-4914.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 1995, 1996, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures oo
Notices
Trademarks L .00
About this book . . . e (1
How this book is organlzed C e e i
Conventions]
Tellus whatyou think . X
Chapter 1. Toolbuilder's Development Kit concepts and requirements 1
Tool-building tasks . . 1
Hardware and software requwements 2
Chapter 2. Designing a model 3
Entities e 3
Relationships . 3
Direction . 4
Cardinality . 4
Order . 4
Control 4
Views . 4
Constraints . 5
Exceptions . 5
Chapter 3. Creating a model for a tool 7
Understanding the cache view hierarchy . 7
TCPart names and version context . 8
Designing a model for a tool 8
Creating a disjoint model . 8
Using existing models . 8
Advice for new tool builders. 9
Using the TBDK Breditor (Browser/edltor) . 9
Loading CDL or IDL (via CLS) into the TBDK Bredltor . 9
Chapter 4. Working with CDLand IDL 1
Structure of CDL files .. .11
Sample CDL I
Description of sample CDL T 24
Structure of IDL files . 13
Sample IDL. v}
Description of sample IDL e
Options available in the TBDK Breditor. 16
Attribute datatypes. 16
Attribute options17
Relationship options .17
Method options . . . e
What happens during code generat|on e A
Integrating your model. 20
Chapter 5. Working with views 21
Viewtypes02

© Copyright IBM Corp. 1992, 1995, 1996, 1997 iii

iv

Building a view type.

Defining a view type . .

Adding a view type to a reposnory schema .
View instances

Chapter 6. Build processes for the Toolbuilder’'s Development Kit

Cache DLL build .
Server DLL build .
View DLL build

Chapter 7. Object handles

Handle classes .

Allocating a handle .

Handle management . .
Handle pointers returned by an mterface .
Handles as pointers.

Effect of object deletion on handles

Chapter 8. Accessing information model objects
Creating objects . .
Using generated constructors .
Changing an object’s instance data .
Preparing objects for storage (the fixcrlf method)
Listing objects . . Coe
list .
listCache.
Retrieving objects
retrieve .
retrieveByName .
retrieveObjects
retrieveObjectsByName
Storing objects
store
storeObjects
Locking objects
Method Syntax
Arguments .
Unlocking objects
Method syntax.
Arguments .
Deleting objects .

Chapter 9. Exception handling
Exception handling methods
Exception messages

Chapter 10. Performance and scalability issues
Specific recommendations .
Object modeling recommendatlons .

Transaction and view type design recommendatlons.

Customer support

Bibliography
IBM VisualAge TeamConnecnon I|brary
Tool Builder's Development Kit.

Toolbuilder's Development Guide

21
21
22
23

25
25
26
26

29
29
29
30
30
30
31

33
33
33
34
35
35
35
36
37
37
38
40
42
44
44
45
47
48
48
49
49
49
49

51
51
51

61
61
61
62

63
65

65
65

TeamConnection Technical reports
ObjectStore.

IBM Exchange library .

Related publications

Glossary

Contents

66
66
67
67

69

\Y

Vi Toolbuilder's Development Guide

Figures

1. The cache hierarchy.
2. Sample view type diagram

© Copyright IBM Corp. 1992, 1995, 1996, 1997

Vii

Viil Toolbuilder's Development Guide

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact the Site Counsel, IBM Corporation, P.O.
Box 12195, 3039 Cornwallis Road, Research Triangle Park, NC 27709-2195, USA.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the
warranties of merchantability and fitness for a particular purpose.

IBM may change this publication, the product described herein, or both. These
changes will be incorporated in new editions of the publication.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 iX

X Toolbuilder’'s Development Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

BookManager MVS/XA

Common User Access Operating System/2

C Set++ 0S/2

CUA SOM Developer’s Toolkit
C/370 TeamConnection

IBM VisualAge C++
MVS/ESA XGA

The following terms are trademarks of other companies:

ObjectStore
ObjectStore Design, Inc.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

© Copyright IBM Corp. 1992, 1995, 1996, 1997

Xi

Xii Toolbuilder's Development Guide

About this book

This book is part of the documentation library supporting the Toolbuilder’s
Development Kit (TBDK) feature of the IBM VisualAge TeamConnection licensed
programs. It explains how to create and extend tools and the information model for
accessing objects in TeamConnection. It contains guidance and reference
information.

This book is available in PDF format. Because production time for printed manuals
is longer than production time for PDF files, the PDF files may contain more
up-to-date information. The PDF files are located on the installation CD in directory
path softpubs\enu (softpubs/en_us in UNIX). To view these files, you need a PDF
reader such as Acrobat.

How this book is organized

This book is divided into the following parts:

, provides an overview of the Toolbuilder’'s Development Kit and the tasks you
will need to perform to create a tool or extend the information model.

EChapter 2_Designing a madel” on page 3, explains some of the concepts

involved in designing a model for a tool.

IChapter 3_Creating a madel far a tool” an page 7, explains how to create a
model for a tool using the browser/editor (TBDK Breditor) shipped with the
Toolbuilder's Development Kit.

IChapter 4 Working with CDI_and IDI ” an page 11, explains how to write class
definition language (CDL) and interface definition language (IDL) for generating
code for a model.

[Chapter 5 Working with views” on page 21|, describes the construction and

uses of views.

provides build information related to the model integration process.

IChapter 7 Ohject handles” an page 29, explains the significance and use of

object handles.

, explains how to
code your tool to access information model objects stored in the
TeamConnection database.

IChapter 9 Fxception handling” on page 51l, explains how your tool can handle

TeamConnection exceptions.

[Chapter 10 Performance and scalability issues” on page 61, provides a
discussion of performance and scalability issues related to the Toolbuilder’s
Development Kit.

Conventions

This book uses the following highlighting conventions:

© Copyright IBM Corp. 1992, 1995, 1996, 1997 Xiii

 Jtalics are used to indicate the first occurrence of a word or phrase that is defined
in the glossary. They are also used for information that you must replace.

* Bold is used to indicate items on the GUI.
* Monospace font is used to indicate exactly how you type the information.

» File names follow Intel conventions: mydinmyfile.txt. ~AIX and HP-UX users
should render this file name mydir/myfile.txt.

Tips or platform specific information is marked in this book as follows:
£

Shortcut techniques and other tips

@

IBM VisualAge TeamConnection for OS/2

31

IBM VisualAge TeamConnection for Windows 3.1

IBM VisualAge TeamConnection for Windows/NT

95

IBM VisualAge TeamConnection for Windows 95

IBM VisualAge TeamConnection for AIX

(O]

IBM VisualAge TeamConnection for HP-UX

IBM VisualAge TeamConnection for Solaris

XV Toolbuilder's Development Guide

Tell us what you think

In the back of this book is a comment form. Please take a few moments to tell us
what you think about this book. The only way for us to know if you are satisfied with
our books or if we can improve their quality is through feedback from customers like

you.

About this book XV

XVi Toolbuilder's Development Guide

Chapter 1. Toolbuilder's Development Kit concepts and
requirements

The Toolbuilder’'s Development Kit is a platform for creating tools to enhance or
facilitate application development and management in the TeamConnection
client-server environment. The Toolbuilder's Development Kit extends
TeamConnection’s storage, versioning, and configuration management capabilities
to object-oriented development environments. With the Toolbuilder's Development
Kit the objects you create in a C++ or Smalltalk development environment can be
subject to the same rigor that has been the norm in the industry for file-based
development for some time.

TeamConnection is a client-server system, with information stored persistently on
the server in an object-oriented database. The client retrieves objects from the
database and makes them accessible through the TeamConnection cache services
(TCCYS) interfaces. Tools access these objects through the TeamConnection cache;
when appropriate, the objects (if changed) are stored back into the database.

Servers interact with the TeamConnection client cache through the TeamConnection
API (TCAPI). The TCAPI is used to retrieve, store, list, and query objects from the
persistent store and to navigate to objects currently in the cache. The persistent
store is managed by the ObjectStore object-oriented database.

For supplemental information related to the TeamConnection information model ,
see the TeamConnection Information Model Reference.

Development using the Toolbuilder's Development Kit consists of developing a
model for your tool, and then extending or augmenting the existing information
model used by TeamConnection to support the tool model. Your model will consist
of one or more entity classes, tied together in a network by one or more relationship
classes.

Once you define your model, you will add your model to the server’'s database
schema (also called the storage view), extend the cache to support your classes
(the cache view), and construct your tool using the TCCS interfaces.

Tool-building tasks

If you have a background in object-oriented technology, it will be easier for you to

understand the Toolbuilder's Development Kit, because it is an object-oriented

environment. In particular, developing a tool in this environment requires you to

perform the following tasks:

» Design an entity-relationship model for your tool

» Use the TBDK Breditor to define the Class Definition Language (CDL) or
Interface Definition Language (IDL) files for your model, or write your own
CDL/IDL. Currently the TBDK Breditor is equipped to perform cachecode
generation using CDL; server and view definitions use IDL for code generation.

» Build the model for the cache and the server (two separate steps)

» Define views of your model for use by tool code

» Write your tool's code using the views that you have defined and the interfaces
provided by TCCS

© Copyright IBM Corp. 1992, 1995, 1996, 1997 1

If you have previously written or generated IDL or CLS to describe your model, you
can load your model into the TBDK Breditor to continue working on it. See

CDL or IDI (via CI S) into the TBDK Breditor” on page 9 for more information about
loading an eX|st|nq model into the TBDK Breditor. See tChapter 4 \Working with

for more information about using CDL or IDL.

Hardware and software requirements

In order to complete the task of building tools, you need the following:

» All software required by or included in the TeamConnection Version 2.0base
product

* VisualAge C++

Refer to the TeamConnection Version 2.0 Release for Announcement (dated
11/26/96) for detailed version and release level information for software products
required by the Toolbuilder’'s Development Kit.

The SOM Developer’s Toolkit (including the SOM compller) is required if
you want to convert existing IDL to a CLS file. See L

{uia C1 S) into the TRDK Breditor” on page d for an explanation of this

process.

2 Toolbuilder's Development Guide

Chapter 2. Designing a model

You construct a model for your tool by first identifying the entities (or objects) in the
application and the relationships among them. This approach is called
entity-relationship modeling. Both entities and relationships can have attributes
(such as a name or address) and relationships (such as marriedTo or worksFor).
Relationships themselves can have relationships with other entities or relationships.

Once you design the network of entities and relationships, you can define views on
the information that let you manipulate entire networks, or subsets of a network,
easily and concisely.

Entities

Entities are classified in one of two ways: they are either TCParts or dependent
objects. (Dependent objects are also referred to as plumbing objects .) TCParts
have names that you can use to provide unigueness or to search the repository.
Dependent objects do not have names; they are dependent on a TCPart for their
existence. You cannot retrieve or manipulate dependent objects without navigating
(that is, traversing a relationship) from a TCPart.

An entity can inherit its properties not only from TCPart but also from another entity
(called a superclass of the entity). Multiple inheritance is not supported.

Handles are the mechanism used by the client cache to access model objects.

See [Chapter 7_Ohject handles” on page 29 for a detailed explanation of handle

allocation and management.

Relationships

The only way to refer to one entity from another is by traversing a relationship.
Relationships are a special class of dependent objects; they have two special
attributes: the source and the target of the relationship. A relationship cannot exist
without both a source and a target; in this way, it is dependent on both the source
and the target. If you delete either the source or the target, the relationship is
deleted too.

Note: Because pointer values are not persistent, it is not advisable to use pointers
to refer to one object from another. The address of the target object could
change from one reference to the next.

Relationships can have attributes and can be the source or target of other
relationships. Instances of relationships do not have names; they are always
dependent objects, controlled by a TCPart.

Relationships also have direction, cardinality, order, and control. Together these
properties are referred to as relationship semantics

© Copyright IBM Corp. 1992, 1995, 1996, 1997 3

Direction

Cardinality

Order

Control

A relationship has a source and a target. Traversing the relationship from the
source to the target is traversing the relationship in the primary direction. The
source of the relationship owns the relationship, which has ramifications for
updating the relationship. These ramifications are related to the TeamConnection
merge capability. If two separate development efforts affect a single object, the
result is two versions of that object. When it is time to merge the updates made to
the two versions into a single version, TeamConnection must examine all of the
relationships that are owned by the object. Since an object owns relationships in the
primary direction, all relationships in the primary direction are merged when the two
versions of the object are merged.

Direction also has an important impact on authorization checking. To change a
relationship you must have authority to update the source object. No authorization
checks are made for the target object.

Relationships can be traversed in the inverse direction as well. There is no concept
of a one-way relationship.

The roles that describe the relationship’s direction are the primary verb (such as
employs) and the inverse verb (such as isEmployedBy).

Relationship cardinality controls how many relationships can be constructed
between a source and target object. Cardinality is expressed as a range of values:
one-to-many (1..m), many-to-one (m..1), one-to-one (1..1), and many-to-many
(m..m).

Some tools may require that certain relationships be maintained in a specific order.
These relationships can be maintained in an ordered collection and are called
ordered relationships. By default, relationships are not ordered. Ordered
relationships are kept in the order they are created, but they can be reordered by
tools.

Dependent objects must be controlled by a TCPart.

Objects that are subclasses of TCPart cannot be controlled.

For more information on the base classes for models, including TCPart, see

Views

Views help you manage and work with extensive networks of objects according to
the needs of the tools. You define views of objects and their relationships by writing
IDLand compiling it for use by both the client and the server.

4 Toolbuilder's Development Guide

You can define views over your object that include or exclude attributes, including
attributes used to model relationships. Once you define a view, you can retrieve or
store the view as though it were one entity, rather than a (potentially large) set of
entities.

Defining a view is a way to define how your tool will access information. It describes
a path through the attributes and relationships that constitute the instance data.
Views can include relationships that are mutually exclusive, since only one of the
relationships can actually be instantiated in the data.

Views can include attributes (including those defined in superclasses), traverse
relationships into the same or other objects, or embed another view definition by
traversing relationships into the other view.

You can also construct a view by selecting types of relationships in which the object
that owns the relationship has specified an abstract superclass as the
implementation of the relationship.

For additional information related to constructing views, including a sample view

IDL, see [Chapter 5 Working with views” an page 21,

Constraints

The existence of entities, relationships, and attributes is controlled by constraints.
Constraints are the conditions under which entities, relationships, and their
attributes are created and deleted.

Exceptions

TeamConnection exceptions are provided as a means of evaluating the success of

client actions. See ['Chapter 9_Fxception handling” on page 51| for detailed

information on exception handling.

Chapter 2. Designing a model 5

6 Toolbuilder's Development Guide

Chapter 3. Creating a model for a tool

This section provides an approach for developing a tool model.

Understanding the cache view hierarchy

After you have designed the model for your tool, you begin constructing it by
placing your entity and relationship classes in the cache view hierarchy according to
the behavior you want them to have.

Eigure 1 shows the base classes (along with related classes) for all models, as
represented by the TBDK Breditor.

=3 TeamConnection TBDK Breditor Kl

Subsystem TeamConnection Generate Edit Selected View Help
Version: breditor [rel|wrk Component: comp

ADObject

=

(ADArmotatedObject) (ADArmotationTextJ (AD Lmlc)

(T CPa.rt) (ADLmlcT CPart DependsCOnT CPa.rt) (ADLdnch Dot Ciby ZAnnothtj (fdc Linlc# pplColl2T CPa.rt)

fdcApplicationCollectar J

< JF] 5
Copyright 1996, IBM

Figure 1. The cache hierarchy

The base classes are defined as follows:

ADObject
All handles inherit directly or indirectly from this object.
TCPart
All object handles managed by TeamConnection inherit from this object.
ADLink
All relationship handles inherit from this object.
_ADObject
All objects inherit directly or indirectly from this object.
_TCPart

All objects managed by TeamConnection inherit from this object.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 7

_ADLink
All relationship objects inherit from this object.

_TCPart and TCPart represent the set of entities that are managed by

TeamConnection (using check in/out, lock/unlock, and so on), while _ADObject and

ADObject represent the class of entities that are controlled by _ TCPart and TCPart

through relationships or relationship paths, which are represented by ADLink and
ADLink.

You place your classes into the hierarchy by designating a superclass for them.

TCPart names and version context

TCPart names are unique within a class and within a release. The TCPart
baseName cannot include the ":" and "|" characters.

The syntax for the version context is as follows:

famﬂyIre]easel release2 ... re]easen|workarea1 workarea2 ... workarean
where releasen must have a corresponding workarean.

The "workarea” can be a driver, a release, or a version ID if the tool is doing only
reads.

A TCPart can be linked to more than one version context, which might have
implications for locking and storing. If you want to lock or store version contexts
other than the current set, it is necessary to use the force option discussed in

Designing a model for a tool

The model you construct determines the capabilities of your tool. When you extend
the information model, you can introduce either a totally disjoint model (your tool
does not interact with other tools) or a tool that uses other elements of the
information model.

Creating a disjoint model

In many cases, it is simpler to develop a model that does not interact with other
tools. Your development effort is not subject to changes in the other model; you
have complete control. However, you (and your customers) will not derive the
benefit of information-sharing between tools.

Using existing models

If you choose to tie your model to other pieces of the information model (refer to the
Information Model Reference, SC34-4554 for details), you need to determine if your
extensions can establish the ties through existing relationships, or if your extension
will require adding new relationships. Adding new relationships to the information
model requires you to add attributes to existing classes, which is known as schema
evolution.

8 Toolbuilder's Development Guide

Advice for new tool builders

If you are just starting to build tools to integrate with TeamConnection, the following
pointers might be helpful:

» Start small, with 2 object classes and one relationship. If you can make this work,
you have 90% of the integration accomplished.

* Work with the cache implementation first, rather than integrating the storage
model immediately. Always set up your test environment to create the objects in
the cache, update them in the cache, but stub the store calls that update the
persistent store.

The cache representation can be rebuilt very quickly relative to the server
schema, and will allow you to exercise tool semantics to validate your model.
Integration with the server should come when your model is reasonably stable,
and you require the ability to make your objects persistent.

* Spend a great deal of time architecting the views you use against the model.
Views provide mechanisms to enable tool writers to get the right information as
one transaction, rather than requiring multiple transactions to achieve a desired
state. The cost for multiple views is far outweighed by the cost of multiple
transactions.

» Work with the information model constructs, rather than attempting to map the
information model objects to an intermediate representation. TeamConnection
provides a rich set of operators for handling relationships, objects, and attributes;
it largely eliminates the need for tool-defined data structures. Introducing a
mapping layer might reduce your dependence on TeamConnection, but will make
it more difficult to map your changes back to the information model constructs,
and may degrade the performance of your tool.

Using the TBDK Breditor (Browser/editor)

The TeamConnection Toolbuilder’'s Development Kit Breditor is a graphical interface
for creating, editing, and browsing the class definitions for a tool being integrated
with TeamConnection. The capabilities of the TBDK Breditor enable you to do the
following:

» Graphically design class definitions and hierarchies

» Graphically view and modify existing classes

» Verify the completeness and accuracy of a defined class subsystem
* Generate CDL, IDL, or C++ files from the defined class definitions

The TBDK Breditor provides integrated help to aid users in all phases of model
design.

Loading CDL or IDL (via CLS) into the TBDK Breditor

If you are working on a model that you began developing with CDL or IDL, you can
load the existing model definition language files into the TBDK Breditor and
continue developing your model there.

To load CDL, simply select Integrate CDL from the Subsystem menu.

To load IDL into the TBDK Breditor, you must first convert the IDL to a CLS file,
which can be integrated into the TBDK Breditor. CLS (and CDL) files are temporary

Chapter 3. Creating a model for a tool 9

storage files for work in progress. They provide a way for you to save your work for
reloading into the TBDK Breditor without generating IDL or C++ code for your
model.

The Toolbuilder’'s Development Kit provides a utility, idl2cls.exe, that you can use to
convert existing cache IDL into a CLS file for integration into the TBDK Breditor.

@

The idl2cls.exe utility starts the SOM compiler. Before you attempt this
procedure, make sure that you have SOM installed on your system and that
the appropriate environment variables are updated with the SOM
information (LIBPATH, PATH, and so on).

The IDL-to-CLS converter requires that the class named TCPart be declared by
adding an interface statement for it at the beginning of the file. The interface
statement should appear as follows:

interface TCPart;
To convert IDL to a CLS file and integrate it into the TBDK Breditor, follow these
steps:

1. Use idl2cls.exe to convert the IDL to a CLS file as follows:
id12cls sourceFileName

Replace sourceFileName with the nhame of your IDL file.

2. Integrate the CLS file into the TBDK Breditor by selecting Integrate CLS from
the Subsystem menu.

10 Toolbuilder's Development Guide

Chapter 4. Working with CDL and IDL

You can work with CDL or IDLas generated by the TBDK Breditor, or you can write
it yourself. This chapter explains the CDL and IDL generated by the TBDK Breditor.
You can use this information to interpret and understand the generated CDL/IDL or
to create your own.

CDL is used to define classes that are to be managed within the TeamConnection
cache,, in an effort to simplify the process of defining and maintaining tool models.

Currently IDL must be used for server-side modeling and building views. The IDL
that the TBDK Breditor generates for a model is a superset of the interface
definition language used in the SOM Developer’s Toolkit. The Toolbuilder’s
Development Kit uses this standard IDL to define the classes, attributes, and
methods for your server or view model and expands the standard IDL constructs to
include entity-relationship concepts specific to the Toolbuilder's Development Kit,
such as order, cardinality, direction, and control.

Structure of CDL files

All CDL files consist of the following sections:
* A module statement, which defines the name of the CDL module

» Zero or more class definitions , which define the flags, attributes, methods, and
implementation of the objects in a class.

Each interface definition consists of a name, zero or more flags, zero or more
attributes (including attributes used to hold relationships), and zero or more
methods.

» Relationship classes include definitions of target and source attributes.
* Comments in the CDL begin with //.

The format of a statement in a CDL file is: tag : data

The following sample cache CDL defines an interface consisting of a subclass of
TCPart, a dependent (plumbing) object, and a relationship between them. The CDL

is explained in [Description of sample CDI” an page 19. Use the numbers along the

Ieft margln of the sample CDL to match the CDL statements to the descriptions in

Sample CDL
ua
module DVNT {
2
class: Managed
//
superClass: TCPart
5

flags : VERSIONED
attribute : myValue
// Simple integer attribute
type: ushort
attribute : pSourcePlumbing
// rel to the subsystems that are dependent on this subsystem

© Copyright IBM Corp. 1992, 1995, 1996, 1997 11

targetClass: Plumbing
targetAttribute: pTargetMgd
relationshipObject: Plumbing2Mgd
u cardinality: 1-1

method : ManagedInit
// Initialization function for Managed instances
type: void
flags : INITFUNC

method : foo
// Function foo; behavior for Managed instances
type: void

class: Plumbing
//
superClass: ADObject

flags : NOEXTENT

attribute : adPTumbAttr
//
type: string

attribute : pTargetMgd
// rel to the subsystems that this subsystem depends on
flags : PRIMARY
targetClass: Managed
targetAttribute: pSourcePlumbing
relationshipObject: Plumbing2Mgd

U cardinality: 1-1

s

relClass: Plumbing2Mgd
//
superClass: ADLink

flags : NOEXTENT

attribute : source
//
flags : PRIMARY
targetClass: Plumbing
targetAttribute: pTargetMgd
cardinality: 1-1

attribute : target
//
targetClass: Managed
targetAttribute: pSourcePlumbing
cardinality: 1-1

Description of sample CDL

1] Module statement for module named DVNT.
3} Managed is a subclass of TCPart.
3} Managed has two attributes: one is a simple integer type, and the second is

a relationship type. It provides two methods, one of which is an initialization
function. The initialization function is called when the object is constructed;
the other method (foo) is called by the tool.

4] Cardinality of the relationship (cardinality) is indicated in the object
classes, in addition to the class used to implement the relationship
(relationshipObject). The attribute used to maintain the other side of the
relationship is provided in the class definition.

12 Toolbuilder's Development Guide

E Plumbing is a subclass of ADObject. The absence of TCPart as a
superclass makes it a [plumbing objeci by default.

0] Plumbing has two attributes: one simple string type and one relationship
type.
u Cardinality of the relationship (cardinality) is indicated in the object

classes, in addition to the class used to implement the relationship
(relationshipObject). The attribute used to maintain the other side of the
relationship is provided in the class definition (targetAttribute).

S} Plumbing2Managed is a relationship class, due to its relationshipClass
identifier (see [iY). The fact that Plumbing2Managed is a subclass of ADLink
also identifies it as a relationship.

9 Plumbing2Managed has two attributes, source and target, which represent

instances of Managed and Plumbing respectively. It has no additional
attributes or methods.

The relationship class indicates the cardinality and attribute names in the
source and target classes, as well as the semantics associated with the
relationship (primary and controlling).

This description is sufficient to generate the TeamConnection interfaces for this
model. Some methods not specified in the CDL (such as get and set methods, and
a number of cache mechanics methods) are automatically generated.

If you choose to generate cache C++ files, the Breditor will generate a CPP (C++)
file, an HPP (C++ header) file, and a CPO file. The CPO code is only applicable to
TeamConnection cache services internal machanisms. Modify the cache CPP file to
define methods and further refine your tool model. The CDL described earlier
generates the following cache CPP file:

/**
*

IBM TeamConnection Cache Services (TCCS)

(C) Copyright IBM Corporation. 1995,1996. A1l rights reserved.

IBM Confidential (IBM Confidential-Restricted when Combined
with the Aggregated 0CO Source Modules for this Program)
0CO Source Materials

* % X X ok 3k X

*
**/

#include "DVNT_.hpp"

void _Managed::ManagedInit()
{
}

void _Managed::foo()
{
1

Structure of IDL files

All IDL files consist of the following sections:
* A module statement, which defines the name of the IDL module

e Zero or more forward interface declarations , which declare the names of the
objects to be defined by the IDL

Chapter 4. Working with CDL and IDL 13

e Zero or more interface definitions , which define the attributes, methods, and
implementation of the objects

Each interface definition consists of a name, zero or more attributes (including
attributes used to hold relationships), zero or more methods, and an
implementation section. The implementation section defines some additional
constructs and semantics not included in the SOM/CORBA specification, such as
order, cardinality, direction, and control.

» Comments in the IDL are delimited by /*...*/.

The following sample IDL defines an interface consisting of a TCPart, a dependent
(plumbing) object, and a relationship between them. The IDL is explained in

Description of sample IDI” an page 153. Use the numbers along the left margin of
the sample IDL to match the IDL statements to the descriptions in m

Sample IDL

module DVNT {

interface ADRoleCollection;
interface Managed;
interface TCPart;

interface Plumbing;
interface ADObject;
interface Plumbing2Mgd;
interface ADLink;

interface Managed : TCPart

attribute ushort myValue;
/* Simple integer attribute */

attribute Plumbing pSourcePTumbing;
/* rel to the subsystems that are dependent on this subsystem */

void ManagedInit();
/* Initialization function for Managed instances */

void foo();
/* Function foo; behavior for Managed instances */

#ifdef _ SOMIDL__
implementation

adToolInterface = Managed;
adClassExtent = versioned;
d1Tname = fhcDVNT;
isObjectClass;
pSourcePlumbing: adInverse, adLink=PTumbing2Mgd, adTarget="Plumbing::pTargetMgd", card=
ManagedInit: initFunc;
}s
#endif
1

14 Toolbuilder's Development Guide

interface Plumbing : ADObject

attribute string adPlumbAttr;

attribute Managed pTargetMgd;
/* rel to the subsystems that this subsystem depends on */

#ifdef _ SOMIDL__
implementation
{
adToolInterface = Plumbing;
adClassExtent = none;
d1Tname = fhcDVNT;
isObjectClass;
pTargetMgd: adPrimary, adLink=Plumbing2Mgd, adTarget="Managed::pSourcePTumbing", car
bs
#endif
}s

§

interface Plumbing2Mgd : ADLink

1011
{
#ifdef _ SOMIDL
implementation
{
adToolInterface = Plumbing2Mgd;
adClassExtent = none;
d1Tname = fhcDVNT;
adSource="PTumbing: :pTargetMgd";
adTarget="Managed: :pSourcePTumbing";
}s
#endif
}s

Description of sample IDL

1} Module statement for module named DVNT.

2] Forward declarations of classes ADRoleCollection, Managed, TCPart,
Plumbing, ADObject, Plumbing2Managed, and ADLink.

3] Managed is a subclass of TCPart.

4] Managed has two attributes: one is a simple integer type, and the second is

a relationship type. It provides two methods, one of which is an initialization
function identified in the SOMIDL implementation section (see [§). The
initialization function is called when the object is constructed; the other
method (foo) is called by the tool.

5] Cardinality of the relationship (card=) is indicated in the object classes, in
addition to the class used to implement the relationship (relObj=). The
attribute used to maintain the other side of the relationship is provided in
the class definition.

6} Plumbing is a subclass of ADObject. The absence of TCPart as a
superclass in the interface statement makes it a W by default.

Chapter 4. Working with CDL and IDL 15

U Plumbing has two attributes: one simple string type and one relationship
type.

Cardinality of the relationship (card=) is indicated in the object classes, in
addition to the class used to implement the relationship (rel0bj=). The
attribute used to maintain the other side of the relationship is provided in
the class definition (adTarget=).

00

9 Plumbing2Managed is a relationship class because it is identified as a
subclass of ADLink.

10 Plumbing2Managed has two attributes, source and target, which represent
instances of Managed and Plumbing respectively. It has no additional
attributes or methods.

The relationship class indicates the cardinality and attribute names in the
source and target classes, as well as the semantics associated with the
relationship (primary and controlling).

This description is sufficient to generate the TeamConnection interfaces for this
model. Some methods not specified in the IDL (such as get and set methods) are
automatically generated.

See [Chapter 8 Accessing infarmation madel ohjects” on page 33 for examples of

code generated from IDL similar to the sample included in this section.

Note: When you generate C++ files from IDL using the Breditor, you should not
attempt to edit server CPP file, which contains generated methods used by
TeamConnection repository services.

Options available in the TBDK Breditor

The following sections describe the options you can specify for attributes, methods,
and relationships when using the TBDK Breditor.

See the Information Model Reference for listing of all attributes available for
modeling when using the Toolbuilder's Development Kit.

Attribute data types

16

The following list shows supported data types for attributes. It includes the keyword
to use for assigning a data type to an attribute. The description of each data type is
followed by the cache implementation in parentheses.

<sequence>bindata
Binary data, not interpreted by the tool (DSBulkData)

boolean
True or false (BOOL)

char A single character (char)
char* A NULL-terminated character string (char *)

string<n>
A NULL-terminated character string with a maximum length of n, not
including the NULL terminator (char *)

string A NULL-terminated character string (char *)

Toolbuilder's Development Guide

Attribute options

Relationship opt

double
A double-precision floating-point number (double)

float A single-precision floating-point number (float)
long A four-byte signed integer (INT4)

short A two-byte signed integer (INT2)

ulong A four-byte unsigned integer (UINT4)

ushort
A two-byte unsigned integer (UINT2)

In addition to assigning a data type to an attribute, you can use the following
options to indicate how attributes and their get and set methods are generated.

noData
The attribute’s value is calculated rather than set. No attribute is generated,;
default get and set methods are generated in the CPP file. The methods
must be overridden with actual implementations supplied by a tool.

static A class variable whose value is shared among all instances of the class.
The attribute is not inherited by subclasses of the current class.

readonly
The attribute cannot be altered by a method. No set method is generated
for read-only attributes. Read-only attributes can be used only within the
scope of a method of their class.

index Support for copy key, ordered, and nonduplicated indexing is provided.
ions

You can use the following options to indicate how relationships are generated.

attrib The name of the attribute in the source class that manages the relationship
with the target object.

inverse
The name of the attribute in the target class that manages the relationship
with the source object.

ordered
If you specify this option, the order of relationships in the collection is
maintained. Constructors and move methods are provided to control the
order of objects in the relationship collection.

allowsDups
Specify this option to allow duplicates of this relationship. A duplicate
relationship is one that can exist more than once between a given pair of
source and target objects. Without this option, an attempt to create a
relationship between the same source and target causes an exception.
Relationships that have attributes or are the source or target of another
relationship are likely to allow duplicates. The default is not to allow
duplicates.

card Specifies the cardinality of the relationship. Allowed values are 1-1, 1-N,
N-1, and M-N.

Chapter 4. Working with CDL and IDL 17

Method options

controlling
Specify this option to give the relationship control over either its source or
target. A relationship is controlling if deleted when either of the following are
true:

* The number of instances of the relationship for the source or target class
is zero.

* The number of instances of the relationship for the source or target class
is less than the minimum cardinality, which is expressed in the IDL
implementation section as follows (for example):

myRel: adMin=3, adMax=5;

To keep the source or target object independent of the relationship, do not
select this option. Controlling semantics are ineffective with (ignored for)
TCPart and its subclasses; no error is indicated.

primary
Select this option to define this class as the primary direction of the
relationship, which makes the object being modeled the source of the
relationship.

relObj Specify the class name of the relationship (the subclass of ADLink that
defines the relationship class). Construct a relationship class name by
combining the source class name, relationship verb, and target class name
as follows: SourceClass_verb_TargetClass (Classl_includes_Class2, for
example). When you name your classes, use the following scheme:

prefix + className

For the prefix, use two or three letters that identify your tool.

isRelationship
Indicates this class is a relationship; generates additional constructors
supporting relationship semantics.

You can use the following options to indicate how methods are generated.

termFunc
Selecting this option generates a method in the CPP file that is called from
the destructor. The termFunc option corresponds to the Finalize method.

initFunc
Selecting this option generates a function that is called from the constructor.
The initFunc option corresponds to the Initialize method.

private
Selecting this option generates the method as a private method. Private
methods can be used only by the class that defines them.

protected
Selecting this option generates the method as a protected method.
Protected methods can be used by the class that defines them or by its
subclasses.

public Selecting this option generates the method as a public method. Public
methods can be used by any class. This is the default option for methods.

virtual Selecting this option generates the method as a virtual method. Virtual
methods are inherited from a superclass of the current class.

18 Toolbuilder's Development Guide

static Selecting this option generates the method as a static method. Static
methods are not inherited from a superclass of the current class.

What happens during code generation

After the CDL or IDL for a tool is complete, you will generate code from it. Several
features of this generated code are worth noting:

» For each class defined in the CDL or IDL, two classes are generated. The extra
class is a handle class, which the cache uses to provide access to information

model objects. See LC.ha.pJ:e.r_LOh;e.c.t_handle.s_o.n_pa.g&ZQ for additional

information about handle classes.

For the sample CDL and IDL shown previously, the following classes are
generated. The first three are the handle classes and the last three are the object
classes.

Managed

Plumbing
Plumbing2Managed
_Managed
_Plumbing
_Plumbing2Managed

» Attributes defined in the CDL or IDL are always generated as private attributes,
while the get and set methods are always generated as public methods.

* Relationship attributes have several different access methods:

— The class defined as the source attribute for a relationship implements three
access methods (potentially):

- _get_targetAttribute () [allows the tool to iterate over the collection of
objects that is returned]

- _getFirst_targetAttribute () [returns a single object]
- _getNext_targetAttribute () [returns a single object]

— The class defined as the target attribute for a relationship implements three
access methods (potentially):

- _get_sourceAttribute () [allows the tool to iterate over the collection of
objects that is returned]

- _getFirst_sourceAttribute () [returns a single object]
- _getNext_sourceAttribute () [returns a single object]
In these methods, targetAttribute and sourceAttribute are the attribute

names defined in the attribute option of the source and target definitions the
relationship interface.

For the sample CDL and IDL, Managed (which is defined as the source for
the relationship Plumbing2Managed) implements the following:

- _get _pSourcePlumbing()

- _getFirst_pSourcePlumbing()

- _getNext_pSourcePlumbing()

Plumbing (defined as the target for the relationship) implements the following:
- _get pTargetMgd()

- _getFirst_pTargetMgd()

- _getNext_pTargetMgd()

Chapter 4. Working with CDL and IDL 19

Integrating your model

See [Chapter 6. Build processes for the Toolbuilder's Development Kit” on page 29
for detailed information regarding the process for integrating your new classes into
TeamConnection.

20 Toolbuilder's Development Guide

Chapter 5. Working with views

Views provide the ability to aggregate objects into larger logical units, which makes
them the essential feature of interest for tools attempting to provide complex (and,
often, resource intensive) interactions. The unit of tool requests, called a view type,
is rooted on a TCPart, but may identify a subset of attributes, relationships, and
plumbing objects (including their attributes and relationships), along with other
TCParts, to be included in a single tool request.

Views are required for all operations that transfer data between the cache and the
server. Each tool request processed by the server represents a single transaction to
the database, in which all or none of the request is committed to the persistent
store.

Determining the appropriate scope of views is crucial to optimizing the performance
of these operations. (See LChapter 10.Performance and scalability issues” od
for more details on this issue.)

View types

A view type is an interface that identifies a connected set of objects and
relationships based on a root object. A set of instances identified in this way can be
treated as a unit for several operations, such as locking and access control.

This section describes how you would build a view type by identifying the
components of the view type. For a more formal definition of a view type, see

Building a view type

Begin with a TCPart and select the attributes that you would like to be part of your
view type. Then, for each class connected to this class through a relationship (links
and targets), you repeat this process.

You can select some, none, or all of the connected classes. For each of the
connected classes you can select classes that are connected to the connected
class.

If the connected class is also the root of a view type, you have the choice of
connecting to it as a view type or as a class. Connecting to it as a view type makes
the definition recursive, while connecting to it as a class stops the definition at a
fixed number of entries.

You can repeat this process to any level, stopping when you decide to stop
selecting connected classes. The process is inherently recursive.

Defining a view type

The following is the simplified IDL for some sample classes that might be part of a
tool model:

© Copyright IBM Corp. 1992, 1995, 1996, 1997 21

interface A : TCPart {
attribute long al;
attribute BRel a2;

}

interface B : TCPart {
attribute long bl;
attribute ARel b2;
attribute CRel b3;
attribute DRel b4;

}

interface C : TCPart {
attribute long cl;
attribute BRel c2;

}

interface D : TCPart {
attribute long dl1;
attribute BRel d2;

}

m is a view type diagram for a view derived from the sample classes above.

ai

a2
BRel
b2

b3
CRel

C
ct

Figure 2. Sample view type diagram

Here is a brief description of how the view type shown in m is constructed:

1. Begin with A, and include al and a2.

2. By including a2, you can navigate to B, via Brel.

3. Bincludes bl and b3. (Note that b2 and b4 are not included in this case.)
4. By including b3, you can navigate to C, via Crel.

5. Finally, C includes c1, but not c2.

Adding a view type to a repository schema

To add a view type to the repository schema, begin by defining an IDL class for it.
The view type that is described in the previous section is defined by the following
IDL:

22 Toolbuilder's Development Guide

interface UA : ADView {
implementation {
adViewDefn = "(A: al, a2->(B: bl,\
b3->(C: cl as xyz)))"
}

}

The value of the adViewDefn modifier describes the inner structure of the view type,
which addresses the classes and relationships that make up the view type. The
syntax of this value (an elemList) is described in the example that follows.

elemList = "(" qualifier ":" elem {"," elem} ")"
elem = attribExpr | relExpr
attribExpr = attribName ["as" attribViewName]

relExpr = attribName "->"
(elemList | viewTypeName)

The terminal values used in the preceding syntax example are defined as follows:

qualifier
A valid class name (for example, Managed). The class can be a subclass of
ADLink, TCPart, or ADObject (implicitly). Before a definition view type can
be loaded into the repository, all of the qualifiers that are in the definition
must already be present in the repository.

The very first qualifier in the adViewDefn must be a managed class.

attribName
An attribute name (for example, empName). This attribute name must be

defined in the qualifier class definition or in one of qualifier's parent
definitions.

attribViewName
This optional terminal allows the view type to override the name of the
attribute for this occurrence of the attribute. This terminal follows the same
naming restrictions as any other attribute name. If this terminal is not
specified, the attribViewName is assumed to be the same as the
attribName.

For example, assume you have an object, Person, with a Name attribute
and the relationship PersonMarriedToPerson. Suppose your program needs
to display a person’s name and that person’s spouse’s name. The root
object’s Name attribute could omit this terminal, and the target object’s
Name attribute could include it with a name of spouseName.

viewTypeName
The name of a view type. A view type can be extended by connecting to
either a class or a view type. When connecting to a view type the definition
is recursive. When connecting to a class the definition is explicit and fixed.

A collection of view type names is called a W

View instances

A view instance consists of the connected object instances that make up a view
type. Every view instance begins with a TCPart.

Chapter 5. Working with views 23

Not every class in the view type is necessarily populated in every view instance of
that view type. In addition, some classes can be represented multiple times in a
view instance, depending on the cardinality of the relationships involved.

For example, assume that BRel from the earlier example has a 1-M cardinality. The

resulting view instance would include many instances of B, each with its own name,
if B inherits from a TCPart.

24 Toolbuilder's Development Guide

Chapter 6. Build processes for the Toolbuilder's Development
Kit

In order to integrate your class objects into TeamConnection, you must have the
appropriate software, as described in the TeamConnection Version 2.0 Release for
Announcement (dated 11/26/96). It is also necessary to create a database that you
are able to communicate with, so that you can run the TBDK Breditor.

Open the Breditor and define the classes that will comprise your subsystem. Refer
to Chapter 3. Creating a model for a tool” on page 71 and the Breditor help for
information on using the Breditor to load existing CLS or CDL and defining classes.
After you have finished defining your classes, save your subsystem into
TeamConnection, so that you will not lose it. Then, follow the steps in

build] or LSemer_D.LL_bJ.qu_an_page_Zd and bLle\N_DLL_bJ.qu_an_page_zd depending

on whether you want to build cache or server/view DLLs.

After you complete the build processes that follow, you will be able to create tools
that use instances of your new classes and to store into and retrieve from
TeamConnection. When you link your tool code, be sure to include fherscli.lib and
fhcemnc.lib in the library specification portion of your link statement.

Cache DLL build

The following steps describe how to build cache DLLs.

1. Select the Cache C++ option from the Breditor Generate menu. Specify the
subsystem that you want to generate.

The Breditor will generate a CPP file, a CPO file, and an HPP file based on
your subsystem definition. The names of the generated files will match your
subsystem name. These files will be placed in the Breditor’'s working
subdirectory.

2. Copy these files into the subdirectory where you want to perform the build. In
addition, copy the generated HPP file into a subdirectory in your INCLUDE path.

3. Copy the sample makefile, cachebld.mak, from the TC_TBDK\TBDK\SAMPLES
subdirectory.

Note: All examples in this file assume that the directory where you installed
Toolbuilder's Development Kit is TC_TBDK.

Modify the cachebld.mak file according to the instructions in the file. If you
modify the makefile name, be sure the change the OCTO_MAKEFILE variable
in the file. You might find it helpful to rename the makefile to the name of your
subsystem with a .MAK extension.

4. Invoke the make process by entering nmake -f cachebld.mak from the
command line. This will create a DLL file called ssname.dll, where ssname is
the name of your subsystem. Copy this DLL file into a subdirectory in your
LIBPATH.

5. The newly-created DLL file and associated LIB file should be placed in the
LIBPATH of all clients that will be running any tools that use the new subsystem.
Any machine that will be doing development work using these new classes will
also need the generated HPP file in its INCLUDE path.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 25

Server DLL build

The following steps describe how to build server DLLs.
1. Select the Server C++ option from the Breditor Generate menu. Specify the

subsystem that you want to generate.

The Breditor will generate a CPP file, an HPP file, and an LCP file based on
your subsystem definition. The names of these files correspond to the DLL
name of your subsystem. The files will be placed in the Breditor's working
subdirectory.

Note: The DLL name of your subsystem can be found on the General page of
any of its class definitions.

Copy these files into the subdirectory where you want to perform the build.

Copy the sample makefile, srvrbld.mak, from the TC_TBDK\TBDK\SAMPLES
subdirectory.

Note: All examples in this file assume that the directory where you installed
Toolbuilder's Development Kit is TC_TBDK.

Modify the srvrbld.mak file according to the instructions in the file. If you modify
the makefile name, be sure the change the OCTO_MAKEFILE variable in the
file. You might find it helpful to rename the makefile to the name of your
subsystem with a .MAK extension.

Invoke the make by entering nmake -f srvrbld.mak from the command line.
This will create two DLL files, dllname.dll and fhcschem.dll, where dllname is the
DLL name of your subsystem, and an ADB file, schema.adb.

Copy the schema.adb file to the TEAMC\BIN subdirectory or anywhere else in
the PATH, provided that it will be the first schema.adb found. Copy the two DLL
files to a subdirectory in your LIBPATH.

View DLL build

After completing the steps outlined in EServer DI 1 build'l, remain in the same
subdirectory where you did the server build and verify or enact the following
conditions:

The TC_DBPATH environment variable is set to the subdirectory where you want
to create the new database (the same path that you copied the schema.adb file
to in step B under EServer DI I build).

The TCP/IP libraries are in your LIBPATH.

The Object Store cache manager and server are started.

Proceed with the following steps to build a view DLL:
1. Copy the sample makefile, viewbld.mak, from the TC_TBDK\TBDK\SAMPLES

subdirectory.

Note: All examples in this file assume that the directory where you installed
Toolbuilder's Development Kit is TC_TBDK.

Do not rename or modify this file.

26 Toolbuilder's Development Guide

@

Copy the bldviews.cmd file from TC_TBDK\TBDK\SAMPLES if you are
running on OS/2.

T

Copy the bldviews.bat file from TC_TBDK\TBDK\SAMPLES if you are
running on Windows/NT.

Create or copy any view IDL desired for your new subsystem into your build
subdirectory. Be sure that no other IDL is in this subdirectory; however, you can
have multiple view IDL files for your subsystem.

All view IDL names should begin with view. For example, a view for subsystem
X could be named viewx1.idl.

Enter emitd11v view*.id1 from the command line. This will produce several
intermediate files. Do not modify these files.

Enter bldviews from the command line. This will produce two DLL files,
dllview.dll and dllviews.dll.

Copy the dllviews.dll file to a subdirectory in the LIBPATH on the server
machine. Copy the dllview.dll file to a subdirectory in the LIBPATH of any client
machine that will use the new database created by this process.

Create the new database. The database will now be aware of your new classes
and allow you to persistently retrieve and store instances of your classes.

Chapter 6. Build processes for the Toolbuilder's Development Kit 27

28 Toolbuilder's Development Guide

Chapter 7. Object handles

Handles are the mechanism that the TeamConnection cache uses to provide
access to underlying model objects.

Several requirements are satisfied through the use of handles:

* An object can be referenced and used by several tool processes. Deletion of an
object accessed directly (not through a handle) can result either in traps, which
happen when another tool process accesses an object that is no longer present,
or in the need for complicated code by the tool to prevent such situations.

* Objects that can no longer be reached through navigation can be freed,
increasing the amount of resources available for tools.

* Object identity and uniqueness are provided by using handles to search for
existing objects within the cache, without requiring each tool to reimplement this
function.

Handle classes

Handle classes are generated from the model specification; each model class
automatically has a handle class. Handles act as pointers to a model object, and
provide access to both attributes and methods that are implemented on the model.
Transparent use of the handle class is provided through three operators:

» operator(]

e operator*

* operator->

These operators support pointer notation through the instance, without actually
constituting a pointer. Each of these operators is overridden in the handle class to
provide a type-safe return type for the kind of model object the handle refers to.

Note: Type-safe return types are provided only for compilers that support this
convention.

Handles are very small, making them efficient to embed as needed.

Allocating a handle

The following examples show how of allocate handles in various contexts:

// Allocate on the stack; freed when leaving scope
TCPart handle(ADObject::defaultVersion());

// Allocate on the heap; freed using delete
TCPart *pHandle=new TCPart (ADObject::defaultVersion());

// Using createNewHandle(); not sure what kind of model object it is.
ADObject *pHandle=someHandle->createNewHandle();

// Using the copy constructor on the stack
TCPart copyHandle((TCPart &)oldHandle);

// Using the assignment operator
TCPart assignHandle=otherHandle;

© Copyright IBM Corp. 1992, 1995, 1996, 1997 29

Handle management

Allocating (or assigning) a handle for a model object has the effect of increasing a
use count associated with that object. The use count is used by TeamConnection to
determine when an object or network of objects can be removed from the cache.
Constructing a new handle to an object is said to pin that object in the cache, which
implies that the object is in use. All handles that are constructed or allocated must
be deleted in order for the related object to be deleted.

Relationships use handles as well, so the use count for an object [calculated by the
method _ADObject::_get _useCount()] may seem higher than expected. However,
when a network’s total use count is represented by the number of handles used to
manage the relationship (that is, when there are no external handles to the
network), the entire network can be removed from the cache.

The TeamConnection application programming interface can construct handles that
eventually must be freed by the caller. Examples include both _TCPart: :list(), and
_TCPart::retrieveByName(). These methods return pointers to a DSModelCollection,
which contains the handles. To free these handles, either remove them from the
collection, or simply delete the collection.

Allocating a handle to a DSModelCollection increases the use count for an object;
freeing a handle from the collection decreases the use count. Iterating across the
collection [using the first() and next() methods] does not change the use count.

Handle pointers returned by an interface

Some interfaces [such as the navigation interfaces, which return the other side of a
relationship, or the DSModelCollection::first() and next() methods], will return a
pointer to a handle. These handles must not be freed. Instead, you can reference
them while holding a handle to an object in the network, or you can construct a new
handle based on the handle returned by the interface. Unless the interface indicates
that the handle must be freed by the caller, do not delete handle pointers returned
by the interface.

Handles as pointers

There are considerations related to using or copying handle pointers. If you are
using handle pointers instead of handles, you have, syntactically, constructed a
pointer to a pointer. This must be reflected in the way you use the pointer.

For instance:

TCPart handlel(ADObject::defaultVersion());
handlel-> get_adName(); // Handles act Tike pointers

TCPart *pHandle=new TCPart(ADObject::defaultVersion());
(*pHandle)->_get_adName(); // Pointer to a pointer syntax

The latter type of usage can leave you with an invalid pointer if the original handle

has been freed. Therefore, it is better to construct a new handle as necessary,
rather than trust that the handle supplied to you will continue to exist.

30 Toolbuilder's Development Guide

Effect of object deletion on handles

The use of _ADObiject::markDeleted() also affects the handles in a network. When
markDeleting an object, the object is severed from the network. All relationship
handles are removed, which means that navigation to other objects is no longer
possible, but all externally-held (tool) handles are preserved.

Access to the object through these handles is still safe, although tools should check
to ensure the object’s state makes sense in the context of the tools operation.

Chapter 7. Object handles 31

32 Toolbuilder's Development Guide

Chapter 8. Accessing information model objects

The Toolbuilder's Development Kit provides methods for querying, creating, storing,

and deleting objects in a repository schema. This chapter explains how to use these
methods to access objects in your repository schema. C++ interfaces are described
the expalnations that follow.

Once a view has been constructed in the cache (or if you wish to continue working
with a view you've stored in the repository), the methods described in this section
become more pertinent.

These interfaces are defined as methods on TCPart. Many of the methods are
virtual methods, allowing tools to override them to augment or replace the actions
they represent (for instance, to perform client-side validation before storing an
object). Many of the methods—Ilist, retrieveObjects, retrieveByName, and
retrieveObjectsByName—are designed to retrieve objects that do not necessarily
exist in the cache, and so are provided as static methods.

Each of the following sections describes a method, shows the syntax for the
method, and lists the arguments you pass with the method and their meaning.

For methods and messages related to exception handling, see m

Creating objects

Objects are created through the Handle class definition; for our example CDL file
(refer to E'Sample CDI” on page 11)), these interfaces are provided:

Managed(const char *vstr, const charx id=defaultObjID(),
int bCreate=True);

The version string and id uniquely identify the object, but can be assigned values
when the object is stored. The third parameter is used to control construction of the
underlying model object, and should not be specified by tools.

Using generated constructors

The following examples are provided to illustrate the use of generated constructors.

// Allocates a handle, but no underlying model object:
Managed handle;

// Allocates a handle and a model object, using defaults for version and name:
Managed pObjl(DSModelObject::defaultVersion(), DSModelObject::defaultObjID());

// Allocates a handle and a model object, using defaults for version:
Managed pObj2(DSModelObject::defaultVersion())

// Allocates a handle and a model object from the heap; the handle
// should eventually be freed (using delete); the cache will manage
// the deletion of the model object when there are no further

// references to it.

Managed *pHeapObj=new Managed(DSModelObject::defaultVersion())

// Construct a plumbing object using defaults:
Plumbing pDependentObj (DSModelObject::defaultVersion());

© Copyright IBM Corp. 1992, 1995, 1996, 1997 33

// Construct a relationship; no need to save the handle if there are no

// attributes that need to be set. When the relationship handle goes out of

// scope, the relationship object will continue to exist, held in place by the
// model objects for pHeapObj and pPlumbing. If pHeapObj had been

// allocated from the stack, the entire network would be released upon

// leaving scope.

Plumbing2Managed(pHeapObj, &pDependentObj);

Changing an object’s instance data

For every attribute, get and set methods are automatically generated. For the
myValue attribute defined in Managed, the following methods are provided:

uINT2 _get _myValue(void);
void _set_myValue(uINT2 value, omSetProcessing setFunc=SET_CHANGE_FLAG);

These methods allow you to access the values of the attributes. If the attribute had
been specified with the 'readonly’ modifier, or if the attribute had represented a
relationship, there would be no generated set method.

Similarly, if the attribute had a 'nodata’ modifier, the interfaces would have been
generated, but they would have been generated with a default implementation in
the CPP file, and would have to be tailored by the programmer.

The setFunc argument to the C++ set methods is used to indicate a change in the
value of the attribute. The default set methods set the change flag. If the set
methods do not supply this argument, the object does not know that it has changed,
much as if you had modified the instance variable directly. At some point before the
object is stored, however, the object must be marked as changed in order to be
included in the data stream sent to the server.

The possible values of setFunc are as follows:

SET_NONE
Sets the value, but does not affect the change flag.

SET_CHANGE_FLAG
Sets the value, and sets the change flag to TRUE.

SET_IGNOREIFCHANGED
Examines the change flag before setting values. One of the following
actions occurs:

+ If the change flag value is TRUE, the function returns immediately and
nothing happens.

 If the change flag value is FALSE, the function behaves as it would for
SET_CHANGE_FLAG.

SET_RESET
Sets the value, and clears the change flag.

These access methods can be exercised through the handle redirection operators
[operator *(), operator[](), and operator->()] as though the handle were a pointer:
uINT2 temporaryValue;

Managed pObj(DSModelObject::defaultVersionID());

temporaryValue=pObj->_get myValue();

pObj->_set _myValue(2);

34 Toolbuilder's Development Guide

If you are working with a pointer to a handle (for instance, as returned by new()),
the handle must be dereferenced before applying redirection operators:

uINT2 temporaryValue;

Managed *pObj=new Managed(DSModelObject::defaultVersionID());
temporaryValue=(*pObj)-> get _myValue();
(*pObj)->_set_myValue(2);

Preparing objects for storage (the fixcrlf method)

The fixcrlf method makes adjustments to an object’s bulk data to prepare it for
storage on the file system. The default, CRLF_DEFAULT, adds carriage returns, line
feeds, Control-Z characters, and converts tab characters to spaces, as needed for
bulk data storage.

Return Type
integer

Parameters
Name <Direction>Type
flags <Input > integer

Default
CRLF_DEFAULT
Valid Values

* CRLF_DEFAULT (CRLF_ADDCR | CRLF_CTRLZ | CRLF_EXPANDTAB
for Intel, none of the above for UNIX)

+ CRLF_ADDCR (adds carriage returns)

* CRLF_CTRLZ (adds end-of-file characters)

» CRLF_ADDTAB (replaces spaces with tabs)

+ CRLF_EXPANDTAB (replaces tabs with spaces)

Method syntax
int _TCPart::fixcr1f(int flags=CRLF_DEFAULT);

Listing objects

list

There are two methods for listing objects: list and listCache.

For the list method, objects are partially represented in the cache for purposes of
the query, although they currently reside as complete objects on the server. The
listCache method addresses cache objects only.

The list interface provides the ability to bring partial information about a set of
objects into the cache. The only information retrieved is the name of the object(s),
the key information used by subsequent retrievals, and the time stamp. Although
the complete root object is instantiated in the cache for the this method, only these
attributes are set; other objects represented by the view type are not instantiated.

Handles to the objects found on the server are returned in the DSModelCollection in
C++. Tools are responsible for freeing the collection when they are done with it.

Chapter 8. Accessing information model objects 35

listCache

Method syntax

static _TCPart::1ist(char* viewList, char* wildName, char* strVersion);

Arguments

char* viewList
A representation of a collection of view types, used to search for TCParts
as several different views. When combined with a wildcard name, use of the
correct viewList effectively becomes several searches within one
transaction. The form of a viewList is a string of view type names separated
by spaces.

char *wildName
A character representation of an object name, potentially with embedded
wildcard characters. TeamConnection supports ’_’ as matching one
character, and '%’ as matching zero or more characters.

char *strVersion
Specifies which version contexts are to have the action applied. Single
version contexts are specified with the form "family|release|workarea” or
"family|release|release”; multiple version contexts can be supplied for some
actions, and take the form: "family|releasel release?...releasen|workareal
workarea?2...workarean”.

Note: A driver or versionID can be used in place of workarea.

If the strVersion is specified as "family|release|release”, the context is set to
refer to the release; only read-only operations are allowed.

Note that an individual object can have only one context; an object with a
different version string is considered a separate object.

The listCache method returns a collection of handles to cache objects satisfying
search criteria defined by a query.

Method syntax

static _TCPart::1istCache(char* viewList, char* wildName,
char* strVersion);

Arguments

char* viewList
A representation of a collection of view types, used to search for TCParts
as several different views. When combined with a wildcard name, use of the
correct viewList effectively becomes several searches within one
transaction. The form of a viewList is a string of view type names separated
by spaces.

char *wildName
A character representation of an object name, potentially with embedded
wildcard characters. TeamConnection supports '’ as matching one
character, and '%’ as matching zero or more characters.

char *strVersion
Specifies which version contexts are to have the action applied. Single
version contexts are specified with the form "family|release|workarea” or

36 Toolbuilder's Development Guide

"family|release|release”; multiple version contexts can be supplied for some
actions, and take the form: "family|releasel release?...releasen|workareal
workarea?2...workarean”.

Note: A driver or versionID can be used in place of workarea.

If the strVersion is specified as "family|release|release”, the context is set to
refer to the release; only read-only operations are allowed.

Note that an individual object can have only one context; an object with a
different version string is considered a separate object.

Retrieving objects

retrieve

The repository provides four methods for retrieving objects: retrieve,
retrieveByName, retrieveObjects, retrieveObjectsByName.

The retrieve interface instantiates the view type in the cache. The retrieve method
requires key information (such as that provided by the list interface, or a prior
retrieval) in order to function. All attributes and objects included by the view
definition view type are instantiated in the cache.

No handle is returned from the interface, as the tool already has a handle to the
object being retrieved.

Method syntax

virtual int retrieve(char* viewType, int lock,
int refreshFlag, int forceOption, char* strVersion);

Arguments

char* viewType
The name of the view that is used to retrieve the instance data. For a given
retrieve request, only a single view type can be specified, although an
object can be retrieved as any number of view types, as long as the view
types have the same root entity.

int lock
Instructs TeamConnection cache services that objects should be locked
upon retrieval:

lock==1
All NamedObijects in the view are locked.

lock==
No additional locks are acquired.

int refreshFlag
Instructions to TeamConnection cache services used to determine the
response if the storage representation of an object differs from the cache
representation.

lock==REFRESH_OVERWRITE
Indicates that the storage representation will replace the cache
representation.

Chapter 8. Accessing information model objects 37

retrieveByName

lock==REFRESH NONE
Indicates that the retrieval will fail if the cache object has changed
since retrieval from the repository.

lock==REFRESH _PRESERVE
Allows the retrieve to succeed if the time stamps on the cache and
server do not match, but will preserve changes made in the cache.

int forceOption

An indication that changes should be forced into the repository, possibly
breaking links with the part in other version contexts. Its intent is to indicate
that, although the version string supplied might not match the current set of
versions applicable to the object in the persistent store, the changes in
those versions specified in the version string are to be made, breaking the
links to those current versions not included in the version string.

The force option is important only if LOCK is specified. If you want to
retrieve or store a locked part in a particular release or workarea that is
linked to another release or workarea, you might want to specify the force
option when you are checking in or checking out the part, even if someone
else might have the part checked out in another context.

forceOption==

Indicates that links should be broken.
forceOption==0

Indicates that links should be preserved.

Note: If O is supplied, and the part is linked with versions not specified in
the version string, the action will fail.

char *strVersion

Specifies which version contexts are to have the action applied. Single
version contexts are specified with the form "family|release|workarea” or
"family|release|release”; multiple version contexts can be supplied for some
actions, and take the form: "family|releasel release?...releasen|workareal
workarea?2...workarean”.

Note: A driver or versionID can be used in place of workarea.

If the strVersion is specified as "family|release|release”, the context is set to
refer to the release; only read-only operations are allowed.

Note that an individual object can have only one context; an object with a
different version string is considered a separate object.

The retrieveByName method allows tools to retrieve a view instance in the cache
without a preceeding list operation. The name of the object (possibly with wildcards)
is used to resolve the object or objects on the server that are represented by the
indicated view types in the viewList.

Handles to the view roots matching the qualifications (wildName, viewList) that are
found on the server are returned in the DSModelCollection. Tools are responsible
for freeing the collection (which, in turn, frees the handles) when they are done with

38 Toolbuilder's Development Guide

Method syntax

static DSModelCollection * _TCPart::retrieveByName(
char* viewlList, char* wildName,
int lock, int refreshFlag,
int forceOption, char* strVersion);

Arguments

char* viewList
A representation of a collection of view types, used to search for TCParts
as several different views. When combined with a wildcard name, use of the
correct viewList effectively becomes several searches within one
transaction. The form of a viewList is a string of view type names separated
by spaces.

char *wildName
A character representation of an object name, potentially with embedded
wildcard characters. TeamConnection supports ’_' as matching one
character, and "%’ as matching zero or more characters.

int lock

Instructs TeamConnection cache services that objects should be locked
upon retrieval:

lock==1
All NamedObjects in the view are locked.

lock==
No additional locks are acquired.

int refreshFlag
Instructions to TeamConnection cache services used to determine the

response if the storage representation of an object differs from the cache
representation.

lock==REFRESH_OVERWRITE
Indicates that the storage representation will replace the cache
representation.

lock==REFRESH_NONE
Indicates that the retrieval will fail if the cache object has changed
since retrieval from the repository.

lock==REFRESH_PRESERVE
Allows the retrieve to succeed if the time stamps on the cache and
server do not match, but will preserve changes made in the cache.

int forceOption
An indication that changes should be forced into the repository, possibly
breaking links with the part in other version contexts. Its intent is to indicate
that, although the version string supplied might not match the current set of
versions applicable to the object in the persistent store, the changes in
those versions specified in the version string are to be made, breaking the
links to those current versions not included in the version string.

The force option is important only if LOCK is specified. If you want to
retrieve or store a locked part in a particular release or workarea that is
linked to another release or workarea, you might want to specify the force
option when you are checking in or checking out the part, even if someone
else might have the part checked out in another context.

forceOption==1
Indicates that links should be broken.

Chapter 8. Accessing information model objects 39

forceOption==
Indicates that links should be preserved.

Note: If O is supplied, and the part is linked with versions not specified in
the version string, the action will fail.

char *strVersion
Specifies which version contexts are to have the action applied. Single
version contexts are specified with the form "family|release|workarea” or
"family|release|release”; multiple version contexts can be supplied for some
actions, and take the form: "family|releasel release2...releasen|workareal
workarea?2...workarean”.

Note: A driver or versionID can be used in place of workarea.

If the strVersion is specified as "family|release|release”, the context is set to
refer to the release; only read-only operations are allowed.

Note that an individual object can have only one context; an object with a
different version string is considered a separate object.

retrieveObjects

The retrieveObjects method allows tools to instantiate the view types specified for
multiple objects. This method is an extension of the retrieve method; it allows tools
to specify a collection of object-viewtype pairs to be retrieved, whereas retrieve only
allows for specification of a single object and view type. All attributes and objects
included by the view types are instantiated in the cache.

Handles to the view roots matching the qualifications that are found on the server
are returned in the DSModelCollection. Tools are responsible for freeing the
collection (which, in turn, frees the handles) when they are done with it.

Method syntax

static DSModelCollection * _TCPart::retrieveByName(
ObjectViewList * 1list,
int lock, int refreshFlag,
int forceOption, char* strVersion);

Arguments

ObjectViewList * list
ObjectViewlList is a class that contains a collection of handle/view pairs
used to specify the objects to be retrieved. The ’list’ portion of the argument
is a pointer to an instance of ObjectViewList.

ObjectViewList provides some simple interfaces and a cursor class to aid in
its creation and maintenance, as follows:

class ObjectViewList {
ObjectViewList();

ObjectViewList &add(ADObject *pObj, char *view);
ObjectViewList &remove(ADObject *pObj, char *view);
int isMember(ADObject *pObj, char *view);
int Count();

}s

class ObjectView {
ObjectView(ADObject *pObj, char *view);

40 Toolbuilder's Development Guide

char =View();
ADObject *Object();

}s

class ObjectViewList Cursor {
ObjectViewList_Cursor(ObjectViewList *xovl1);
ObjectView *first();
ObjectView *next();
ObjectView *prev();

}s

int lock
Instructs TeamConnection cache services that objects should be locked
upon retrieval:

lock==
All NamedObjects in the view are locked.

lock==0
No additional locks are acquired.

int refreshFlag
Instructions to TeamConnection cache services used to determine the
response if the storage representation of an object differs from the cache
representation.

lock==REFRESH_OVERWRITE
Indicates that the storage representation will replace the cache
representation.

lock==REFRESH _NONE
Indicates that the retrieval will fail if the cache object has changed
since retrieval from the repository.

lock==REFRESH_PRESERVE
Allows the retrieve to succeed if the time stamps on the cache and
server do not match, but will preserve changes made in the cache.

int forceOption
An indication that changes should be forced into the repository, possibly
breaking links with the part in other version contexts. Its intent is to indicate
that, although the version string supplied might not match the current set of
versions applicable to the object in the persistent store, the changes in
those versions specified in the version string are to be made, breaking the
links to those current versions not included in the version string.

The force option is important only if LOCK is specified. If you want to
retrieve or store a locked part in a particular release or workarea that is
linked to another release or workarea, you might want to specify the force
option when you are checking in or checking out the part, even if someone
else might have the part checked out in another context.

forceOption==1

Indicates that links should be broken.
forceOption==0

Indicates that links should be preserved.

Note: If O is supplied, and the part is linked with versions not specified in
the version string, the action will fail.

char *strVersion
Specifies which version contexts are to have the action applied. Single
version contexts are specified with the form "family|release|workarea” or

Chapter 8. Accessing information model objects 41

"family|release|release”; multiple version contexts can be supplied for some
actions, and take the form: "family|releasel release?...releasen|workareal
workarea?2...workarean”.

Note: A driver or versionID can be used in place of workarea.

If the strVersion is specified as "family|release|release”, the context is set to
refer to the release; only read-only operations are allowed.

Note that an individual object can have only one context; an object with a
different version string is considered a separate object.

retrieveObjectsByName

42

The retrieveObjectsByName method allows tools to instantiate the view types
specified for multiple objects. This method is an extension of the retrieveByName
method; it allows tools to specify a collection of name-viewtype pairs to be
retrieved, whereas retrieveByName only allows for specification of a single name
and view type. All attributes and objects included by the view types are instantiated
in the cache.

Handles to the view roots matching the qualifications that are found on the server
are returned in the DSModelCollection. Tools are responsible for freeing the
collection (which, in turn, frees the handles) when they are done with it.

Method syntax

static DSModelCollection = _TCPart::retrieveByName(
NameViewList * Tist,
int lock, int refreshFlag,
int forceOption, char* strVersion);

Arguments

NameViewList * list
NameViewList is a class that contains a collection of handle/view pairs used
to specify the objects to be retrieved. The ’list’ portion of the argument is a
pointer to an instance of NameViewList.

NameViewList provides some simple interfaces and a cursor class to aid in
its creation and maintenance, as follows:

class NameViewList {
NameViewList &add(char *name, char xview);
NameViewList &remove(char *name, char *view);
int isMember(char *name, char *view);
int Count();

}s

class NameView {
NameView(char *wName, char *view);

char «\iew();
char *WildName();
}s

class NameViewList Cursor {
NameViewList_Cursor(NameViewList *nvl);
NameView *first();
NameView *next();
NameView *prev();

Toolbuilder's Development Guide

int lock

Instructs TeamConnection cache services that objects should be locked
upon retrieval:

lock==1
All NamedObijects in the view are locked.

lock==
No additional locks are acquired.

int refreshFlag
Instructions to TeamConnection cache services used to determine the
response if the storage representation of an object differs from the cache
representation.

lock==REFRESH_OVERWRITE
Indicates that the storage representation will replace the cache
representation.

lock==REFRESH_NONE
Indicates that the retrieval will fail if the cache object has changed
since retrieval from the repository.

lock==REFRESH PRESERVE
Allows the retrieve to succeed if the time stamps on the cache and
server do not match, but will preserve changes made in the cache.

int forceOption
An indication that changes should be forced into the repository, possibly
breaking links with the part in other version contexts. Its intent is to indicate
that, although the version string supplied might not match the current set of
versions applicable to the object in the persistent store, the changes in
those versions specified in the version string are to be made, breaking the
links to those current versions not included in the version string.

The force option is important only if LOCK is specified. If you want to
retrieve or store a locked part in a particular release or workarea that is
linked to another release or workarea, you might want to specify the force
option when you are checking in or checking out the part, even if someone
else might have the part checked out in another context.

forceOption==1
Indicates that links should be broken.

forceOption==
Indicates that links should be preserved.

Note: If O is supplied, and the part is linked with versions not specified in
the version string, the action will fail.

char *strVersion
Specifies which version contexts are to have the action applied. Single
version contexts are specified with the form "family|release|workarea” or
"family|release|release”; multiple version contexts can be supplied for some
actions, and take the form: "family|releasel release2...releasen|workareal
workarea?2...workarean”.

Note: A driver or versionID can be used in place of workarea.

If the strVersion is specified as "family|release|release”, the context is set to
refer to the release; only read-only operations are allowed.

Chapter 8. Accessing information model objects 43

Note that an individual object can have only one context; an object with a
different version string is considered a separate object.

Storing objects

Tools use the store method to cause changes to the object to be persistently stored
in the database. All modified objects in the view definition are stored in a single
transaction, and either succeed or fail as a unit.

If constraints have been defined for the object(s) in the view type, the constraints
are checked before the transaction is committed. If any one of the constraints fail,
the entire transaction is rolled back, and no changes are made persistent.

No handle is returned from the interface, as the tool already has a handle to the
object being stored.

store

This method stores cache objects identified by a view type into the repository.

Method syntax

virtual int store(charx viewType, int bCheckTimeStamp,
int forceOption, uINT4 TockOption,
char* comments, char* strVersion);

Arguments

char* viewType
The name of the view that is used to store the instance data. For a given
store request, only a single view type can be specified, although an object
can be stored as any number of view types, provided that the view types
have the same root entity.

int bCheckTimeStamp
Instructs TeamConnection cache services (TCCS) to evaluate client and
server time stamps when objects are stored.

bCheckTimeStamp==
Causes the server to compare the time stamp of the object being
stored with the time stamp on the server version.

Note: This option is recommended. If not specified, it can result in
overwriting competing changes from another source.

bCheckTimeStamp==
Causes TeamConnection cache services to ignore time stamps
when objects are stored.

int forceOption
An indication that changes should be forced into the repository, possibly
breaking links with the part in other version contexts. Its intent is to indicate
that, although the version string supplied might not match the current set of
versions applicable to the object in the persistent store, the changes in
those versions specified in the version string are to be made, breaking the
links to those current versions not included in the version string.

The force option is important only if LOCK is specified. If you want to
retrieve or store a locked part in a particular release or workarea that is
linked to another release or workarea, you might want to specify the force

44 Toolbuilder's Development Guide

storeObjects

option when you are checking in or checking out the part, even if someone
else might have the part checked out in another context.
forceOption==
Indicates that links should be broken.
forceOption==0
Indicates that links should be preserved.

Note: If O is supplied, and the part is linked with versions not specified in
the version string, the action will fail.

UINT4 lockOption

Instructs TeamConnection cache services (TCCS) on how handle the
locking of TCParts:

LOCK_OBTAINANDRELEASE
Also known as optimistic locking, TCCS will attempt to check out
the part(s) before checking in changes. The part(s) are not locked
after the TeamConnection action.

LOCK_OBTAINANDRETAIN
TCCS will attempt to check out the part(s), and will keep the part(s)
locked after checking in changes.

LOCK_RELEASE
Indicates that the part(s) is/are already locked, and the lock should
be released after applying the changes.

LOCK_RETAIN

Indicates that the part(s) is/are already locked, and the lock should
be retained after applying the changes.

char *comments

Free-form text commentary associated with the TeamConnection action.

char *strVersion

Specifies which version contexts are to have the action applied. Single
version contexts are specified with the form "family|release|workarea” or
"family|release|release”; multiple version contexts can be supplied for some
actions, and take the form: "family|releasel release2...releasen|workareal
workarea?2...workarean”.

Note: A driver or versionID can be used in place of workarea.

If the strVersion is specified as "family|release|release”, the context is set to
refer to the release; only read-only operations are allowed.

Note that an individual object can have only one context; an object with a
different version string is considered a separate object.

This method stores cache objects identified by list of view types into the repository.

Method syntax

virtual int storeObjects(charx viewlList, int bCheckTimeStamp,

int forceOption, uINT4 lockOption,
char* comments, char* strVersion);

Chapter 8. Accessing information model objects 45

46

Arguments
ObjectViewlList * list

ObjectViewList is a class that contains a collection of handle/view pairs
used to specify the objects to be stored. The ’list’ portion of the argument is
a pointer to an instance of ObjectViewList.

ObjectViewList provides some simple interfaces and a cursor class to aid in
its creation and maintenance, as follows:

class ObjectViewList {
ObjectViewList();

ObjectViewList &add(ADObject *pObj, char *view);
ObjectViewList &remove(ADObject *pObj, char *view);
int isMember(ADObject *pObj, char *view);
int Count();

1

class ObjectView {
ObjectView(ADObject *pObj, char *view);

char *View();
ADObject *Object();
1

class ObjectViewList_Cursor {
ObjectViewList Cursor(ObjectViewList *ovl1);
ObjectView *first();
ObjectView *next();
ObjectView *prev();
1

int bCheckTimeStamp

Instructs TeamConnection cache services (TCCS) to evaluate client and
server time stamps when objects are stored.

bCheckTimeStamp==
Causes the server to compare the time stamp of the object being
stored with the time stamp on the server version.

Note: This option is recommended. If not specified, it can result in
overwriting competing changes from another source.

bCheckTimeStamp==
Causes TeamConnection cache services to ignore time stamps
when objects are stored.

int forceOption

An indication that changes should be forced into the repository, possibly
breaking links with the part in other version contexts. Its intent is to indicate
that, although the version string supplied might not match the current set of
versions applicable to the object in the persistent store, the changes in
those versions specified in the version string are to be made, breaking the
links to those current versions not included in the version string.

The force option is important only if LOCK is specified. If you want to
retrieve or store a locked part in a particular release or workarea that is
linked to another release or workarea, you might want to specify the force
option when you are checking in or checking out the part, even if someone
else might have the part checked out in another context.

forceOption==1
Indicates that links should be broken.

Toolbuilder's Development Guide

forceOption==0
Indicates that links should be preserved.

Note: If O is supplied, and the part is linked with versions not specified in
the version string, the action will fail.

uINT4 lockOption

Instructs TeamConnection cache services (TCCS) on how handle the
locking of TCParts:

LOCK_OBTAINANDRELEASE
Also known as optimistic locking, TCCS will attempt to check out
the part(s) before checking in changes. The part(s) are not locked
after the TeamConnection action.

LOCK_OBTAINANDRETAIN
TCCS will attempt to check out the part(s), and will keep the part(s)
locked after checking in changes.

LOCK_RELEASE

Indicates that the part(s) is/are already locked, and the lock should
be released after applying the changes.

LOCK_RETAIN

Indicates that the part(s) is/are already locked, and the lock should
be retained after applying the changes.

char *comments
Free-form text commentary associated with the TeamConnection action.

char *strVersion
Specifies which version contexts are to have the action applied. Single
version contexts are specified with the form "family|release|workarea” or
"family|release|release”; multiple version contexts can be supplied for some
actions, and take the form: "family|releasel release?...releasen|workareal
workarea?2...workarean”.

Note: A driver or versionID can be used in place of workarea.

If the strVersion is specified as "family|release|release”, the context is set to
refer to the release; only read-only operations are allowed.

Note that an individual object can have only one context; an object with a
different version string is considered a separate object.

Locking objects

The lock interface performs a TeamConnection checkout against each TCPart in the
view type. Objects that have already been locked have their lock count increased in
the cache, as TeamConnection does not support multiple checkouts against a part
in the storage view. As such, exiting a tool or unlocking the object through another
interface may not preserve the lock count in the cache as expected. For instance, a
tool may edit a given object in several windows, locking the object in each. If the
user unlocks the object through the TeamConnection GUI, the locks for each
window will be lost.

Objects that are added to the view instance through other means (such as those
added to the database by other users) will not be locked; the cache representation
is used to determine which objects are locked.

Chapter 8. Accessing information model objects 47

Method Syntax

Arguments

It is important to realize that the cache lock function does not necessarily represent
the current lock state. It only provides an indication of locking attributes within one
instance of the cache, as set by the retrieve interfaces, and maintained by store.

There are limits on the reliability of the cache representation of lock states. For
example, there would be no indication in the cache that the following actions have
taken place:

* An object is locked when first retrieved, assuming the object was already locked
before the retrieve action.

* A user locks an object just retrieved into the cache through another interface.

* The same tool is started in another window, or another tool is started, and one of
those tools locks an object just retrieved.

* Atool abends or otherwise quits without unlocking.
* Any TeamConnection command is performed.

virtual void lock(char* viewType, int forceOption, char* strVersion);

char* viewType
The name of the view that is used to lock the instance data. For a given
lock request, only a single view type can be specified, although an object
can be locked as any number of view types, provided that the view types
have the same root entity.

int forceOption
An indication that changes should be forced into the repository, possibly
breaking links with the part in other version contexts. Its intent is to indicate
that, although the version string supplied might not match the current set of
versions applicable to the object in the persistent store, the changes in
those versions specified in the version string are to be made, breaking the
links to those current versions not included in the version string.

forceOption==TRUE
Indicates that links should be broken.

forceOption==FALSE
Indicates that links should be preserved.

Note: If FALSE is supplied, and the part is linked with versions not
specified in the version string, the action will fail.

char *strVersion
Specifies which version contexts are to have the action applied. Single
version contexts are specified with the form "family|release|workarea” or
"family|release|release”; multiple version contexts can be supplied for some
actions, and take the form: "family|releasel release2...releasen|workareal
workarea?2...workarean”.

Note: A driver or versionID can be used in place of workarea.

If the strVersion is specified as "family|release|release”, the context is set to
refer to the release; only read-only operations are allowed.

48 Toolbuilder's Development Guide

Note that an individual object can have only one context; an object with a
different version string is considered a separate object.

Unlocking objects

Method syntax

Arguments

The unlock interface unlocks each TCPart in the view type. Objects that have
multiple locks in the cache have their lock count decreased; when the lock count
reaches 0, the cache unlocks the object on the server.

Objects that are added to the view instance through other means (such as those
added to the database by other users) will not be unlocked; the cache
representation is used to determine which objects are unlocked.

virtual void unlock(char* viewType, char* strVersion);

char* viewType
The name of the view that is used to lock the instance data. For a given
lock request, only a single view type can be specified, although an object
can be locked as any number of view types, provided that the view types
have the same root entity.

char *strVersion
Specifies which version contexts are to have the action applied. Single
version contexts are specified with the form "family|release|workarea” or
"family|release|release”; multiple version contexts can be supplied for some
actions, and take the form: "family|releasel release?...releasen|workareal
workarea?2...workarean”.

Note: A driver or versionID can be used in place of workarea.

If the strVersion is specified as "family|release|release”, the context is set to
refer to the release; only read-only operations are allowed.

Note that an individual object can have only one context; an object with a
different version string is considered a separate object.

Deleting objects

Deleting objects from the repository is performed through a combination of
methods. First, the object is marked for deletion via the ADObject::markDeleted()
method. Secondly, the object is transmitted to the server (and the delete operation
made persistent) through the store method.

ADObject: :markDeleted (DSModelCollection *Tog, BOOL blLog)

The markDeleted method requires a collection that the delete action should be
logged against (keeping in mind that the deletion will not be persistent until the
server is notified through a store operation). The log can be either one that is
provided and managed by the tool, or one that is associated with a named object.
In the C++ example, the value of bLog determines whether delete actions are
added to the collection (TRUE), or not (FALSE).

Chapter 8. Accessing information model objects 49

All TCParts in a view instance have a delete log associated with them in the cache,
as a result of loading the view into the cache. One way to access the delete log is
supplied in the following example:

(*pObj) ->markDeleted((*(TCPart*)pPart -> get deleteLog());

During the store operation, any TCParts encountered while walking the view are
processed, and their contents included in the data stream to be sent to the server.

As such, if you choose to provide your own delete log management, you are
responsible for transferring the objects on that log to a TCPart included in the view
before the store operation proceeds. If the store is successful, the server will update
the cache and the delete logs for the associated named objects are emptied.

Objects can appear on their own delete log. Attempting to markDelete the same

object several times has no effect. Finally, objects that have just been created are
not logged, since there is no persistent store representation to delete.

50 Toolbuilder's Development Guide

Chapter 9. Exception handling

TeamConnection uses exceptions to notify tools that TeamConnection client actions
have not succeeded. Exception messages indicate the cause of errors. The class of
exceptions relevant to tools is called TCException.

Exception handling methods

TCException is a C++ class that has several public methods used by tools to
access information about an error. Methods used to access error information
include the following:

long getMsgNum();
Returns the exception number.

char *getMessage();
Returns the actual text of the error.

long getSeverity();
Returns the severity of the error:

0 Informational
4 Warning

8 Error

12 Severe

16 Unrecoverable

When the exception is detected, it is the tool's responsibility to free up any memory
used by the exception. By including the TC Client include file tcrs.hpp, tools should
have access to all prototypes and defines needed. However, if necessary, they can
include tcexp.hpp to get to the TCException class prototype directly.

Exception messages

When tools detect an exception, they should compare and map the exception
message number returned with the exception message macros included in
cmvc_msg.h.

The following is a list of the exception message macros with a description of each:

CC_NAMED_OBJECT_EXISTS

An attempt to recreate a %1§s named %2$s was made. This action will
create a duplicate Named Object either in the cache or in the database.
There cannot be identically named objects in either the cache or

the database.

CC_HLQ_NOT_SET

The MVS Dataset High Level Qualifier (HLQ) needs to be changed
in the user Profile.

Currently, this is done by updating the

appropriate field in the Profile Table found in

EWSPPROF.TXT. In most cases the HLQ should be your MVS Userid.

CC_CONSTRAINT_FAIL
The store operation failed because one or more objects violated

© Copyright IBM Corp. 1992, 1995, 1996, 1997 51

52

constraints.

Number of constraint violations: %1$s
Constraint Message(s):

%2%s

CC_CANT_CONNECT_DB

An attempt to connect to a %1§s Database was made, but the
connection cannot be made. The reason code is

%2%s. The database alias that cannot be connected is %3$s.

CC_SQL_RC

A SQL command returned with a return code

that was non-zero, indicating that some condition occurred during
execution, other than successful completion. A return code of
%1$s was returned by the SQL command %2$s.

CC_COMPILER_CODE
The a %1$s compiler returned with a non-zero
return code %2$s or could not be invoked.

CC_REMOTE_COMP_CODE

A call to a remote function returned a completion code

that was non-zero, indicating that some condition occurred during
execution, other than successful completion. The remote function
invoked was %1§s, the completion code returned was %2§s.

CC_UNIMPLEMENTED_METHOD

An unexpected attempt was made to call a method that

is not implemented in the DSObject subclass against which it was
invoked. The object type against which the method was invoked is
%1$s. The method that is invoked was %2$s.

CC_ADD_DUPID_TO_OBJMGR

An attempt to recreate a %1$s named

%2$s was made. This action will create a duplicate

Named Object either in the cache or in the database. There cannot
be identically named objects in either the cache or the database.

CC_CANT_FIND_OBJ_IN_OBJMGR
Object %1$s was not found in the cache.

CC_DOS_CALL_FAILED
An Operating System call, %1$s, failed.
The return code is: %2§s.

CC_CANT_ACCESS_REMOTE_SYSTEM

The remote system, %1$s, cannot be

accessed for the desired action (%2$s).

For some reason a connection to the remote system cannot be
established.

The reason code is: %3$s.

CC_CANT_ACCESS_LIBRARY

The library, %1$s, cannot be accessed for

the desired action (%2$s).

A connection to the host may not be establishable, or the library
may not exist.

Toolbuilder's Development Guide

CC_CANT_RETRIEVE_FILE

The remote file, %1$s cannot be retrieved from

the host operating system. The host id being used for retrieval is
%2$s. The local file name where the file will be stored

is %3$s. The return code from the internal call is

<%4$s>.

A connection to the host may not be establishable, the file

may not exist, or the file may be being accessed by another process.

CC_CANT_SEND_FILE

The local file, %1$s cannot be sent to

the host operating system. The host id being used for transfer is
<%2$s>. The remote file name where the file should be

stored is <%3$s>. The return code from the internal

call is <%4§s>.

A connection to the host may not be establishable, the file

may not exist, or the file may be being accessed by another process.

CC_NO_PLATFORM_FILE_INFO

The operating system platform information that is supposed to
participate in this file access, (Platform = %1§s)

cannot be accessed. Either this information has not yet been defined
or the given platform is not supported.

CC_SEM_ERROR

The attempt to create a semaphore was not successful. This
can occur when your workstation does not have enough available
resources.

CC_THREAD_ERROR

The attempt to start an 0S/2 thread was not successful.

This can occur when your workstation does not have enough available
resources.

CC_NO_REQUEST
There is nothing in the queue to process.

CC_API_NOT_FOUND
The required TeamConnection API %1$s
was not found in the module %2$s.

CC_DLL_LOAD_ERROR

The required module, %1§s, could not be loaded.
If you are trying to access the DB2/2 Catalog,
ensure that you have DB2/2 installed.

CC_SUBSYS_NO_INIT
An attempt to execute a request in subsystem
%1$s failed because the subsystem has not yet
been initialized.

CC_QSERV_NA
The request cannot be submitted because the queuing service
is not activated.

Chapter 9. Exception handling

53

CC_NOTHING_IN_DEVICE
There is nothing in the the device to search. Nothing can be
Tisted.

CC_NO_MATCHES_IN_DEVICE
The search for an object using the following match pattern
yielded no matches: %1$s.

CC_OBJECT_TYPE_NOTFOUND

A processing error occurred when a reference was made to a
type %1$s that is not in the table of

supported TeamConnection types.

CC_CANT_ACCESS_FILE
The file, %1§s cannot be accessed.
It may not exist, or it may be being accessed by another process.

CC_INVALID_CC

An unrecognized exception has occurred. <%l = %2>.

The condition code for the exception code cannot be found in the
TeamConnection message table. See the TeamConnection logs

for details as to where the exception occurred.

CC_UNEXPECTED_CLASS

A processing error has occurred due to the unexpected use of

a particular class in processing. The class name specified,

%1$s is not expected at this point in the object

class processing. See the

TeamConnection Togs for details as to where the exception occurred.

CC_UNEXPECTED_ATTRIB

A processing error has occurred due to the unexpected use of

an attribute in processing. Either the attribute,

%1$s is not a member of the object class %2$s or

is not expected at this point in the object class processing. See the
TeamConnection Togs for details as to where the exception occurred.

CC_OBJ_MEMALLOC
The attempt to create an object was not successful because
there is not sufficient memory.

CC_COLL_ADD

An internal processing error occurred while
attempting to add an object, %1$s, to a
collection. Incorrect results may occur.

CC_MODCOLL_ADD
An internal processing error occurred while attempting to
add an object, %1$s, to a collection.

CC_MoDcoLL_Dup

An internal processing error occurred while attempting

to add an object, %1$s, to a collection.

The object being added is a duplicate of an object that is already
in the collection. The existing index is %2$s.

54 Toolbuilder's Development Guide

CC_INPUT_SNO

A processing error occurred while attempting to
internally pass an incompatible parameter. The internal
variable name that caused the exception is %1$s.

The value passed was %2$s.

CC_GET_SNO

A processing error occurred while attempting to

access an attribute or object. The object type being

accessed was %1$s. The attribute that could not be gotten was %2§s.

CC_SET_SNO

A processing error occurred while attempting to

set an attribute for an object via a set method.

The object type was %1$s. The attribute that could not
be set was %2§s.

CC_RSS_OS_ERROR
An ObjectStore processing error occurred. The message
returned from ObjectStore follows: %1$s.

CC_RSS_INV_VERSION

A processing error occurred while trying to access versioned
data in the repository because of the specification of a
NULL or invalid version string. The invalid version string
was %1§s.

CC_RSS_NO_CACHE_OBJECT

TeamConnection encountered an error while trying to locate
an object %1$s with key or name

%2$s in the Cache. The specified object

was expected to be found in the Cache but could not be found
by the key or name indicated. See the TeamConnection logs
for details as to where the exception occurred.

CC_RSS_INV_CDF_UNIT

An error occurred in TeamConnection because an

invalid CDF unit %1$s was encountered during the parsing of
an input CDF data stream. A communication failure may have
caused the error.

CC_RSS_VIEW_NOT_INITIALIZED
This error occurs only when the View Type meta-model
methods is used outside of the Repository Services code.

CC_RSS_INV_VIEW DEF
The View Type is not defined as expected.

CC_RSS_WRONG_METHOD_INVOCATION
According to the input data stream, the method being invoked
was %1$s, but the actual method invoked was %2$s.

CC_RSS_VERS_CONTEXT_ERR
A processing error occurred while trying to set versioned
context data %1$s.

Chapter 9. Exception handling

55

56

CC_RSS_CHECKIN_ERROR
Could not check in %1$s with name %2$s.
%3%s

CC_RSS_CHECKOUT ERROR
Could not check out %1$s with name %2$s.
%3$s

CC_RSS_CREATEMO_ERROR
Could not create %1§s with name %2$s in TeamConnection.
%3§s

CC_RSS_INV_KEY_FORMAT
Persistent store keys must be in the form of .

CC_RSS_CREATE_ERROR
An error occurred while trying to create an object
of type '%s'.

CC_RSS_OBJ_NOT_FOUND
The object could not be found with the specified key(%1$s).
Another user may have deleted it.

CC_RSS_NO_CLASS_EXTENT
No class extent has been defined in the persistent store
model for the indicated class.

CC_RSS_CACHE_CREATE_ERROR

An error occurred while attempting to create object

'%1$s' in the cache. The object was not created successfully.
Be sure the required models are loaded.

CC_RSS_RENAMEMO_ERROR
An error occurred while trying to rename an object of
type '%s' from '%s' to '%s'.

ol
%S

CC_RSS_REMOVEMO_ERROR
%1$s could not be removed with name %2$s.
%3$s

CC_EWSX_BAD_DATA

No data was found in the CDF Data Stream passed to

the builder or parser or the data stream passed is not
valid. A communication failure may have caused the error.

CC_EWSX_BAD_UNIT
A bad unit was encountered in the CDF Data Stream. A
communication failure may have caused the error.

CC_TCAPI_INITFAILURE
The family may not be started. The entries in your TCP/IP
hosts and services files may not be correct.

Toolbuilder's Development Guide

CC_RSS_WORKAREA_NOT_EXIST

Workarea %1$s is not associated with release %2$s.

The specified workarea may not have been created or the
specified name is not correct.

CC_RSS_CANT_RERETRIEVE_OBJECTS

The specified objects can not be retrieved again
because the objects in the cache are out of date with
the server.

CC_EWSX_CANT_OPEN_FILE
Can't open the file '%1$s'. The attempt
to open '%1$s' was not successful. This can occur when:
- The file does not exist
- Your workstation does not have enough available resources.

CC_EWSX_ERROR_IN_FILE
An error occurred while reading a CDF file. A communication
failure may have caused the error.

CC_RSS_FAILURE_CREATING_COMPONENT
An error was detected while trying to create a component
during import.

CC_RSS_CONNECT_ERROR
An error occurred trying to perform a connect.

CC_RSS_DISCONNECT_ERROR
An error occurred trying to perform a disconnect.

CC_RSS_CANT_ACCESS
You are not authorized to access the specified object.

CC_RSS_TIMESTAMP_CHECK_FAILED
The object you are trying to store, %1$s,
has been updated since it was extracted from the repository.

CC_RSS_VERS_CONTEXT_RELEASE_WORKAREA SAME

The name of the workarea was the same as the name of the release for a
store operation. This is not allowed. Correct the version specification,
and retry the operation.

CC_RSS_VERS_CONTEXT_WORKAREA_NOT_FLUID

The workarea specified is frozen. Stores are not permitted to
a frozen workarea. Correct the version specification, and
retry the operation.

CC_RSS_VERS_CONTEXT_WORKAREA_READ_ONLY

The context for the workarea specified is marked as read only. Stores are
not permitted to a read-only context. Correct the version specification,
and retry the operation.

CC_RSS_CANNQOT_COPY
The specified object cannot be copied because it is currenlty
opened for updates. Objects cannot be copied in the repository

Chapter 9. Exception handling

57

58

if they are in the process of being changed by a repository tool.
Complete all potential updates to the object and store changes in
the repository prior to attempting a copy on this object.

CC_RSS_CANNOT_DELETE

The specified object cannot be deleted because it is currenlty
opened for updates. Objects cannot be deleted from the repository
if they are in the process of being changed by a repository tool.
Complete all potential updates to the object and store changes in
the repository prior to attempting to delete this object from

the repository.

CC_RSS_DB_DEADLOCK
A deadlock situation has occurred on the server causing the transaction
to be aborted. Please retry the operation.

CC_SQL_ERROR
An SQL error has occurred.

0,
%S

CC_RSS_NAME_T00_LONG
An error occurred while trying to set the fullname of an object.
The name specified was too Tong.

CC_RSS_NOCONTROLLER
A dependent object, '%s', was encountered but no controlling
ManagedObject could be found.

CC_BAD_VIEWTYPE
The specific viewType, '%s', is not valid. Be sure the required
models are loaded.

CC_RSS_PART_NOT_FOUND
Part %s of type %s was not found.

CC_RSS_RELEASE_EMPTY
The release %s does not contain any parts to export.

CC_RSS_WORKAREA_EMPTY
The workarea %s does not contain any parts to export.

CC_RSS_MISSING_SRC_TGT

An error occurred while trying to create a relationship object

of type '%s'. Either the source or the target of this relationship
is not present.

CC_RSS_BAD_LOCK_FLAG
An error occurred while trying to perform a store operation.
An invalid 'Lock' flag was used.

CC_RSS_DRIVER_NOT_EXIST

Driver 1$s is not associated with release %2§s.

The specified driver may not have been created or the
specified name is not correct.

Toolbuilder's Development Guide

CC_RSS_DRIVER_EMPTY
The driver %s does not contain any parts to export.

CC_RSS_MAX_CARD_ERROR
Cardinality violation:
The attribute '%s' on object '%s' has a maximum cardinality of %s.

CC_RSS_INVALID_TIMESTAMP
The timeStamp specified, '%s', is invalid.

CC_RSS_INVALID 0ID
An object of type '%s' has an invalid 0ID (%s).

CC_RSS_CONTROLLER_SYNC

An object of type '%s' has a calculated controller that is

not its defined controller. Verify that the model definition

is correct and that all non-managed objects have at Teast one controlling
rel defined.

CC_RSS_CONTROLLER _NOT_STORED
An attempt was made to store a new object of type '%s' without storing its
controller.

CC_RSS_CONSTRAINT_ERROR
Constraint errors were encountered while attempting to store an object.

0,
%S

CC_RSS_BAD_SET_OBJECT_TYPE
An object of type '%s' was expected, but an object of type '%s' was
passed to the %s:: set %s method.

CC_RSS_CANT_RETRIEVE_NEW_OBJ
The specified object can not be retrieved from the server since
it is a newly created object and has not been stored yet.

CC_RSS_SQL_CANT_SET_CONTEXT

The attempt to set the version context to

release '%s' and workarea '%s' failed.

Verify that the workarea has not been pruned

and that the release and workarea names

specified are correct. The query could not be executed.

CC_RSS_USE_SMALLER CHUNKSIZE

There is not enough memory available to allocate space for the

CDF file being generated. Please set TC_CDFCHUNKSIZE to a smaller
value. It's current value is '%s'.

CC_RSS_CANT_CONTROL_MOS
The relationship object '%s' is defined to have controlling semantics,
but managed objects can not be controlled.

CC_RSS_DUP_ANNOT_LABEL
The Tlabel '%s' is used in more than one ADAnnotationText object.

Chapter 9. Exception handling

59

CC_RSS_WRONG_SLASH
An attempt was made to use a backward slash instead of a forward slash
in a name('%s'). Convert all slashes to forward slashes and try again.

CC_RSS_IMPORT FAILED
An error occurred during import.

)
%S

CC_RSS_LOST_SERVER_CONNECTION
The connection to the server was broken. Please try the request again.

CC_RSS_LOST_CLIENT_CONNECTION
The connection to the client was broken.

CC_RSS_INCOMPATIBLE_CLIENT

The client is incompatible with the server.
TooTName: %s
Client Version:
Server Version:

S

o
%
9
%S

CC_RSS_MIN_CARD_ERROR
Cardinality violation:
The attribute '%s' on object '%s' has a minimum cardinality of %s.

CC_RSS_DIFFERENT_VERSIONS

The version context specified on the object(%s) does not match the
version context of the object on the other end of the relationship(%s).
Relationship objects require the source and target objects to have

the same version context.

CC_RSS_BAD_STORE_VERSION
The primary version context specified on the store operation doesn't
match one or more of the version contexts of the objects being stored.

CC_RSS_CANT_WRITE_TO_FILE
An error occurred while trying to write data to file '%s'.
This will usually happen when the disk is full.

CC_RSS_ONLY_SU_CAN_SU
Only a superuser can use the alternate user fields.

60 Toolbuilder's Development Guide

Chapter 10. Performance and scalability issues

For purposes of this section, performance is defined in terms of user
responsiveness, throughput, and other traditional measures of software capability.
Scalability involves the extension of performance to an increasingly larger, multiuser
server system, and addresses parameters such as the number of active users, the
size of data, and the arrival rate of transactions.

For tool builders, the primary focus for improving tool performance involves
designing models that access the appropriate scope of repository data for a user
requests (through the use of views) and minimizing the number of unnecessary
transactions. For many complex requests, both view scope and the number of
transactions must be considered and balanced to provide optimum performance.

The TeamConnection server controls how TCParts are clustered in the database.
Tool builders affect the degree of object clustering by determining the scope of
individual TCParts. An efficient clustering strategy increases the likelihood that, for
common access patterns, the next object in a request or the next request will reside
in a location already mapped from the persistent store to the database cache.

A server daemon is an individually dispatched process capable of processing an
entire tool request. The TeamConnection server might consist of many server
daemons. If all daemons are busy processing requests, additional requests are
queued until a server daemon is free, which is apparent to the tool user as a delay.
By minimizing the number of individual transactions initiated by user requests, a tool
builder can minimize the amount of queueing at the server.

This section is offered as a guide for improving tool performance during design.
Actual performance testing techniques are beyond the scope of this document.

Specific recommendations

During the design process, tool builders have an opportunity to improve overall tool
performance (in terms of user responsiveness) by addressing aspects of object
modeling, transaction scheme, and view type design. These issues are interrelated,
so each should be considered as part of a broader performance improvement
strategy. It is also necessary to take into account the related system parameters,
such as number of users, database size, and data volume within individual user
interactions.

Object modeling recommendations

Design recommendations related to object modeling are based on the following tool
builder tasks:

» Walk through the object model periodically to identify object sizes, expected
cardinalities, and nesting depths.

» Identify and justify all TCPart and class extents (data structures that allow
navigation to each instance of a TCPart subclass).

» Consider any special object clustering requirements.

» ldentify indexes that may exist on an attribute of an object class (usually a name
or an ID).

Note: The TBDK Breditor supplies an indexing option.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 61

It is advisable to justify each TCPart, because there is general overhead related to

TCParts. The recursive potential of view types (see 'Building a view type” onl

hage 21 for an explanation) can increase this overhead exponentially.

The justification process involves determining whether or not the object in question
should be independently managed. In many cases, you might find that a
prospective TCPart could be relegated to the status of plumbing object or attribute,
based on the following (and similar) criteria:

1. Is the object likely to to be the root of a view?

2. Should the object be independently versioned?

3. Would you define the scope of a lock with the object?

If your answers to these and related questions are yes, then the object probably
should be defined as a subclass of TCPart. If not, you might be able to develop an

alternative model that provides the desired behavior, without the additional
overhead.

Transaction and view type design recommendations

62

Design recommendations related to transactions and view type design are based on
the following tool builder tasks:

 |dentify the primary user interface (Ul) interactions with the object model and
their frequency.

¢ For each Ul interaction:

— Identify and justify the corresponding view types and TCAPI server
transactions.

— Estimate data volumes and view type complexity.
» Consider concurrency issues between transactions.

Common and high-impact performance considerations for transaction and view type
design include the following:

1. Justify each instance of nested view types, which may cause the tool to retrieve
much more data than is necessary for most typical user requests. This is an
especially important consideration when view types are nested at two or more
levels.

2. Determine the correspondence between the data retrieved in a view and what
the user actually sees on the GUI. The rule of thumb is to retrieve from the
repository only the data necessary to populate the Ul screen, and no more.

3. Check views for impossible links, such as mutually exclusive relationships.
Again, only include information necessary for the view type.

4. If you break a view into multiple view types to improve performance, consider
the following coding techniques:

» Use subviews that are loaded at user request (for example, a GUI action).

* Obtain a small amount of repository data at first, displaying it to the user
immediately, and spawn a backgound load to retrieve the remainder of the
desired data while the user evaluates the initial Ul screen.

* Create a hierarchy of views, in which the lowest-level parts would be
retrieved only if their owning object was actually accessed by the user.

5. Use access patterns that consolidate transactions, when possible. For example,
instead of using a listByName method (which returns a handle to an object)
followed by a retrieve, use the TeamConnection retrieveByName API, which
performs the same work in a single transaction.

Toolbuilder's Development Guide

Customer support

Your options for IBM VisualAge TeamConnection support, as described in your
License Information and Licensed Program Specifications, include electronic
forums. You can use the electronic forums to access IBM VisualAge
TeamConnection technical information, exchange messages with other
TeamConnection users, and receive information regarding the availability of fixes.
The following forums are available.

* IBM Talklink
Use the TEAMC CFORUM. For additional information about TalkLink, call
— United States 1-800-547-1283
— Canada 1-800-465-7999 ext. 228

* CompuServe

From any ! prompt, type GO SOFSOL, then select TeamConnection. For
additional information, call 1-800-848-8199 and ask for representative 239.

* Internet

Go to the IBM homepage, http://www.ibm.com. Use the search function with
keyword TeamConnection to go to the TeamConnection area.

If you cannot access these forums, contact your IBM representative.
There are several other support offerings available after purchasing IBM VisualAge

TeamConnection. For a list of these offerings, please contact your IBM
representative.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 63

64 Toolbuilder's Development Guide

Bibliography

IBM VisualAge TeamConnection library

The following is a list of the TeamConnection publications.
» License Information (GC34-4497):

Contains license, service, and warranty information.
* Administrator's Guide (GC34-4551):

Lists the hardware and software that are required before you can install and use
the IBM VisualAge TeamConnection product, provides detailed instructions for
installing and configuring the TeamConnection family and build servers, and
provides instructions for administering a TeamConnection family.

» Getting Started (SC34-4552):

Tells first-time users how to install the TeamConnection clients on their
workstations, and familiarizes them with the command line and graphical user
interfaces.

» User’'s Guide (SC34-4499):

A comprehensive guide for TeamConnection administrators and client users that
helps them install and use TeamConnection.

* Commands Reference (SC34-4501):

Describes the TeamConnection commands, their syntax, and the authority
required to issue each command. This book also provides examples of how to
use the various commands.

* Quick Commands Reference (GC34-4500):
Lists the TeamConnection commands along with their syntax.
» Staying on Track with TeamConnection Processes (83H9677):

Poster showing how objects flow through the states defined for each
TeamConnection process.

» The following publications can be ordered as a set (SBOF-8560):
Administrator’'s Guide
Getting Started
User's Guide
Commands Reference
Quick Commands Reference
Staying on Track with TeamConnection Processes

Tool Builder's Development Kit

The following publications are part of the Tool Builder's Development Kit feature:
* Tool Builder's Development Guide (SC34-4553):

Explains how to create and extend tools for accessing objects in the
TeamConnection database. It contains guideance and reference information.

» Information Model Reference (SC34-4554):

Details the TeamConnection information model. This publication is available in
softcopy only.

© Copyright IBM Corp. 1992, 1995, 1996, 1997 65

TeamConnection Technical reports

29.2147
SCLM Guide to TeamConnection Teminology

29.2196
Using REXX command files with TeamConnection MVS Build Scripts

29.2231
TeamConnection Interoperability with MVS and SCLM

29.2235
Using REXX command files with TeamConnection MVS Build Scripts for
PL/l programs

29.2253
Comparison between CMVC 2.3 and TeamConnection 2

29.2254
Migrating from CMVC 2.3 to TeamConnection 2

29.2267
TeamConnection frequently asked questions: how to do routine operating
system tasks

ObjectStore

The following publications are part of the ObjectStore library of documents and are
available for order from Object Design, Inc. To order these documents call (617)
674-5000, Monday through Friday from 8:30 AM to 5:30 PM Eastern Time.

* ObjectStore C++ Installation:
Contains step-by-step procedures for installing the latest release of ObjectStore
on a specific platform:

310-100-40 |
UNIX

310-310-40 |
Windows

310-320-40 |
0Ss/2

* ObjectStore C++ API User Guide (310-000-40 U):
Provides information about the application programming interface for application
programmers.

* ObjectStore C++ API Reference (310-000-40 R):
Describes the API to the features provided by ObjectStore for application
programmers.

* ObjectStore C++ Building Applications (310-000-40 B):
Provides information and instructions for compiling code, generating schemas,
and linking files using all supported compilers; and provides instructions for
developing ObjectStore client applications for use on multiple platforms.

* ObjectStore Management (310-000-40 M):
Provides information and instructions for perfroming management tasks on

ObjectStore server and client systems. It includes server parameters,
environment variables, and database utilities.

* ObjectStore C++ Performance (310-000-40 P):

66 Toolbuilder's Development Guide

Explains the fundamentals of designing and tuning ObjectStore applications for
optimal performance.

IBM Exchange library

The publications listed below can be ordered as a set (SBOF-6098) or separately
as indicated below. IBM Exchange will be available at a later date.

Licensed Programming Specification (GC34-4525):
Installation Guide (SC34-4509):

Bridge Builder’'s Guide (SC34-4508):

User's Guide 1 (SC34-4506):

User’s Guide 2 (SC34-4507):

Related publications

Transmission Control Protocol/Internet Protocol (TCP/IP)

— TCP/IP 2.0 for OS/2: Installation and Administration (SC31-6075)
— TCP/IP for MVS Planning and Customization (SC31-6085)

MVS

MVS/XA JCL User’s Guide (GC28-1351)

MVS/XA JCL Reference (GC28-1352)

MVS/ESA JCL User's Guide (GC28-1830)

MVS/ESA JCL Reference (GC28-1829)

NLS and DBCS

— AIX 4, General Programming Concepts: Writing and Debugging Programs.
(SC23-2533-02). See chapter 16 "National Language Support” for an updated
contents of the AIX 3 material (see below).

— AIX 4, System Management Guide: Operating System and Devices

(SC23-2525-03). See chapter 10, "National Language Support” for system
tasks.

— AIX Version 3.2 for RISC System/6000, National Language Support
(GG24-3850).

— Internationalization of AIX Software, A Programmer’s Guide (SC23-2431).

— National Language Design Guide Volume 1 (SE09-8001-02). This manual
contains very good information on how to enable an application for NLS.
— National Language Design Guide Volume 2 (SE09-8002-02). This manual

provides information on the IBM language codes (consult the "Language
codes” chapter).

Bibliography 67

68 Toolbuilder's Development Guide

Glossary

This glossary includes terms and definitions from
the IBM Dictionary of Computing, 10th edition
(New York: McGraw-Hill, 1993). If you do not find
the term you are looking for, refer to this
document’s index or to the IBM Dictionary of
Computing.

This glossary uses the following cross-references:

Compare to
Indicates a term or terms that have a
similar but not identical meaning.

Contrast with
Indicates a term or terms that have an
opposed or substantially different
meaning.

See also
Refers to a term whose meaning bears a
relationship to the current term.

A

absolute path name. A directory or a part expressed
as a sequence of directories followed by a part name
beginning from the root directory.

access list. A set of objects that controls access to
data. Each object consists of a component, a user, and
the authority that the user is granted or is restricted
from in that component. See also authority, granted
authority, and restricted authority.

action. A task performed by the TeamConnection
server and requested by a TeamConnection client. A
TeamConnection action is the same as issuing one
TeamConnection command.

agent. See build agent.

alternate version ID. In collision records, the name of
a version of a driver, release, or work area where the
conflicting version of a part is visible.

approval record. A status record on which an
approver must give an opinion of the proposed part
changes required to resolve a defect or implement a
feature in a release.

approver. A user who has the authority to mark an
approval record with accept, reject, or abstain within a
specific release.

approver list. A list of user IDs attached to a release,
representing the users who must review part changes
that are required to resolve a defect or implement a
feature in that release.

© Copyright IBM Corp. 1992, 1995, 1996, 1997

attribute. Information contained in a field that is
accessible to the user. TeamConnection enables family
administrators to customize defect, feature, user, and
part tables by adding new attributes.

authority. The right to access development objects
and perform TeamConnection commands. See also
access list, base authority, explicit authority, granted
authority, implicit authority, restricted authority, and
superuser privilege.

B

base authority. The set of actions granted to a user
when a user ID is created within a TeamConnection
family. See also authority. Contrast with implicit authority
and explicit authority.

base name. The name assigned to the part outside of
the TeamConnection server environment, excluding any
directory names. See also path name.

base part tree. The base set of parts associated with
a release, to which changes are applied over time. Each
committed driver or work area for a release updates the
base part tree for that release.

build. The process used to create applications within
TeamConnection.

build agent. A program that handles access to
persistent data on behalf of the build processor. Each
build agent is connected to one and only one build
processor, through a TCP/IP connection.

build associate. =~ A TeamConnection part that is not an
input to or an output from a build. An example of such a
part is a read.me file.

build cache. A directory that the build processor uses
to enhance performance.

build dependent. A TeamConnection part that is
needed for the compile operation to complete, but it will
not be passed directly to the compiler. An example of
this is an include file. See also dependencies.

builder. An object that can transform one set of
TeamConnection parts into another by invoking tools
such as compilers and linkers.

build event. An individual step in the build of an
application, such as the compiling of hello.c into
hello.obj.

build input. A TeamConnection part that will be used
as input to the object being built.

69

build output. A TeamConnection part that will be
generated output from a build, such as an .obj or .exe
file.

build pool. A group of build servers that resides in an
environment. The environment in which several build
servers operate. Typically, several servers are set up for
each environment that the enterprise develops
applications for.

build processor. A program that invokes the tools,
such as compilers and linkers, that construct an
application. Each build processor is connected to one
and only one build agent, through a TCP/IP connection.
See also build agent and build cache.

build scope. A collection of build events that
implement a specific build request. See also build event.

build script. An executable or command file that
specifies the steps that should occur during a build
operation. This file can be a compiler, a linker, or the
name of a .cmd file you have written.

build server. The combination of a build processor
and a build agent. See also build agent and build
processor.

build target. The name of the part at the top of the
build tree which is the final output of a build.
TeamConnection uses the build target to determine the
scope of the build. See also build tree.

build tree. A graphical representation of the
dependencies that the parts in an application have on
one another. If you change the relationship of one part
to another, the build tree changes accordingly.

C

change control process. The process of limiting and
auditing changes to parts through the mechanism of
checking parts in and out of a central, controlled,
storage location. Change control for individual releases
can be integrated with problem tracking by specifying a
process for the release that includes the tracking
subprocess.

check in. The return of a TeamConnection part to
version control.

check out. The retrieval of a version of a part under
TeamConnection control. In non-concurrent releases,
the check out operation does not allow a second user to
check out a part until the first user has checked it back
in.

child component. ~ Any component in a
TeamConnection family, except the root component, that
is created in reference to an existing component. The
existing component is the parent component, and the
new component is the child component. A parent

70 Toolbuilder's Development Guide

component can have more than one child component,
and a child component can have more than one parent
component. See also component and parent
component.

child part. Any part in a build tree that has a parent
defined. A child part can be input, output, or dependent.
See also part and parent part.

client. A functional unit that receives shared services
from a server. Contrast with server.

collision record. A status record associated with a
work area or driver, a part, and one of the following:

* The work area or driver’'s release
* Another work area

TeamConnection generates a collision record when a
user attempts to replace an older version of a part with
a modified version, another user has already modified
that part, and the first user’'s modification is not based
on this latest version of the part.

command. A request to perform an operation or run a
program from the command line interface. In

TeamConnection, a command consists of the command
name, one action flag, and zero or more attribute flags.

command line. (1) An area on the Tasks window or in
the TeamConnection Commands window where a user
can type TeamConnection commands. (2) An area on
an operating system window where you can type
TeamConnection commands.

committed version. The revision of a part that is
visible from the release.

common part. A part that is shared by two or more
releases, and the same version of the part is the current
version for those releases.

comparison operator. An operator used in
comparison expressions. Comparison operators used in
TeamConnection are > (greater than), < (less than), >=
(greater than or equal to), <= (less than or equal to),
and = (equal to).

component. A TeamConnection object that organizes
project data into structured groups, and controls
configuration management properties. Component
owners can control access to data and notification of
TeamConnection actions. Components exist in a
parent-child hierarchy, with descendant components
inheriting access and notification information from
ancestor components. See also access list and
notification list.

concurrent development. Several users can work on
the same part at the same time. TeamConnection
requires these users to reconcile their changes when
they commit or integrate their work areas and drivers
with the release. Contrast with serial development. See
also work area.

configuration management. The process of
identifying, managing, and controlling software modules
as they change over time.

connecting parts. The process of linking parts so that
they are included in a build.

context. The current work area or driver used for part
operations.

corequisite work areas. Two or more work areas
designated as corequisites by a user so that all work
areas in the corequisite group must be included as
members in the same driver, before that driver can be
committed. If the driver process is not used in the
release, then all corequisite work areas must be
integrated by the same command. See also prerequisite
work areas.

current version. The last visible modification of a part
in a driver, release, or work area.

current working directory. (1) The directory that is
the starting point for relative path names. (2) The
directory in which you are working.

D

daemon. A program that runs unattended to perform a
standard service. Some daemons are triggered
automatically to perform their task; others operate
periodically.

database. A collection of data that can be accessed
and operated upon by a data processing system for a
specific purpose.

default. A value that is used when an alternative is not
specified by the user.

default query. A database search, defined for a
specific TeamConnection window, that is issued each
time that TeamConnection window is opened. See also
search.

defect. A TeamConnection object used to formally
report a problem. The user who opens a defect is the
defect originator.

delete. If you delete a development object, such as a
part or a user ID, any reference to that object is
removed from TeamConnection. Certain objects can be
deleted only if certain criteria are met. Most objects that
are deleted can be re-created.

delta part tree. A directory structure representing only
the parts that were changed in a specified place.

dependencies. In TeamConnection builds there are

two types of dependencies:

* automatic . These are build dependencies that a
parser identifies.

e manual . These are build dependencies that a user
explicitly identifies in a build tree.

See also build dependent.

descendant. If you descendant a development object,
such as, a part or a user ID, any reference to that
object is removed from TeamConnection. Certain
objects can be descendant only if certain criteria are
met. Most objects that are descendants can be
re-created.

disconnecting parts. The process of unlinking parts
so that they are not included in a build.

driver. A collection of work areas that represent a set
of changed parts within a release. Drivers are only
associated with releases whose processes include the
track and driver subprocesses.

driver member. A work area that is added to a driver.

E

end user. See user.

environment. (1) A user-defined testing domain for a
particular release. (2) A defect field, in which case it is
the environment where the problem occurred. (3) The
string that matches a build agent with a build event.

environment list. A TeamConnection object used to
specify environments in which a release should be
tested. A list of environment-user ID pairs attached to a
release, representing the user responsible for testing
each environment. Only one tester can be identified for
an environment.

explicit authority. The ability to perform an action
against a TeamConnection object because you have
been granted the authority to perform that action.
Contrast with base authority and implicit authority.

extract. A TeamConnection action you can perform on
a builder, part, driver or release builder. An extraction
results in copying the specified builder, part, or parts
contained in the driver or release to a client workstation.

F

family. A logical organization of related data. A single
TeamConnection server can support multiple families.
The data in one family cannot be accessed from
another family.

family administrator. A user who is responsible for all
nonsystem-related tasks for one or more
TeamConnection families, such as planning, configuring,
and maintaining the TeamConnection environment and
managing user access to those families.

Glossary 71

family server. A workstation running the
TeamConnection server software.

FAT. See file allocation table.

feature. A TeamConnection object used to formally
request and record information about a functional
addition or enhancement. The user who opens a feature
is the feature originator.

file. A collection of data that is stored by the
TeamConnection server and retrieved by a path name.
Any text or binary file used in a development project
can be created as a TeamConnection file. Examples
include source code, executable programs,
documentation, and test cases.

file allocation table (FAT). The DOS- and
0OS/2-compatible file system that manages input, output,
and storage of files on your system. File names can be
up to 8 characters long, followed by a file extension that
can be up to 3 characters.

fix record. A status record that is associated with a
work area and that is used to monitor the phases of

change within each component that is affected by a

defect or feature for a specific release.

freeze. The freeze action saves changed parts to the
work area. Thus, TeamConnection takes a snapshot of
the work area, including all of the current versions of
parts visible from that work area, and saves this image
of the system. The user can always come back to this
stage of development in the work area. Note, however,
that a freeze action does not make the changes visible
to the other people working in the release. Compare
with refresh.

full part tree. A directory structure representing a
complete set of active parts associated with the release.

G

Gather. A tool to organize files for distribution into a
specified directory structure. This tool can be used as a
prelude to further distribution, such as using CD-ROM
or through electronic means like Netview DM/2. It can
also be used by itself for distributing file copies to
network-attached file systems.

GID. A number which uniquely identifies a file’s group
to an AIX system.

granted authority. If an authority is granted on an
access list, then it applies for all objects managed by
this component and any of its descendants for which
the authority is not restricted. See also access list,
authority, and inheritance. Contrast with restricted
authority.

graphical user interface (GUI). A type of computer
interface consisting of a visual metaphor of a real-world

72 Toolbuilder's Development Guide

scene, often as a desktop. Within that scene are icons,
representing actual objects, that the user can access
and manipulate with a pointing device.

GUI. Graphical user interface.

H

high-performance file system (HPFS). In the OS/2
operating system, an installable file system that uses
high-speed buffer storage, known as a cache, to provide
fast access to large disk volumes. The file system also
supports the existence of multiple, active file systems on
a single personal computer, with the capacity of multiple
and different storage devices. File names used with
HPFS can have as many as 254 characters.

host. A host node, host computer, or host system.

host list. A list associated with each TeamConnection
user ID that indicates the client machine that can
access the family server and act on behalf of the user.
The family server uses the list to authenticate the
identity of a client machine when the family server
receives a command. Each entry consists of a login, a
host name, and a TeamConnection user ID.

host name. The identifier associated with the host
computer.

HPFS. See high-performance file system.

implicit authority. ~ The ability to perform an action on
a TeamConnection object without being granted explicit
authority. This authority is automatically granted through
inheritance or object ownership. Contrast with base
authority and explicit authority.

import. To bring in data. In TeamConnection, to bring
selected items into a field from a matching
TeamConnection object window.

inheritance. The passing of configuration
management properties from parent to child component.
The configuration management properties that are
inherited are access and notification. Inheritance within
each TeamConnection family or component hierarchy is
cumulative.

integrated problem tracking. The process of
integrating problem tracking with change control to track
all reported defects, all proposed features, and all
subsequent changes to parts. See also change control.

interest group. The list of actions that trigger
notification to the user IDs associated with those actions
listed in the notification list.

J

job queue. A queue of build scopes. One job queue
exists for each TeamConnection family.

L

lock. An action that prevents editing access to a part
stored in the TeamConnection development environment
so that only one user can change a part at a time.

login. The name that identifies a user on a multi-user
system, such as AIX or HP-UX. In OS/2 and Windows,
the login value is obtained from the TC_USER
environment variable.

M

map. The process of reassigning the meaning of an
object.

metadata. In databases, data that describe data
objects.

N

name server. In TCP/IP, a server program that
supplies name-to-address translation by mapping
domain names to Internet addresses.

National Language Support (NLS). The modification
or conversion of a United States English product to
conform to the requirements of another language or
country. This can include the enabling or retrofitting of a
product and the translation of nomenclature, MRI, or
documentation of a product.

Network File System (NFS). The Network File
System is a program that enables you to share files with
other computers in networks over a variety of machine
types and operating systems.

notification list. ~ An object that enables component
owners to configure notification. A list attached to a
component that pairs a list of user IDs and a list of
interest groups. It designates the users and the
corresponding notification interest that they are being
granted for all objects managed by this component or
any of its descendants.

notification server. A server that sends notification
messages to the client.

NTFS. NT file system.

NVBridge. A tool for automatic electronic distribution
of TeamConnection software deliverables within a
NetView DM/2 network.

O

operator. A symbol that represents an operation to be
done. See also comparison operators.

originator. The user who opens a defect or feature
and is responsible for verifying the outcome of the
defect or feature on a verification record. This
responsibility can be reassigned.

owner. The user who is responsible for a
TeamConnection object within a TeamConnection family,
either because the user created the object or was
assigned ownership of the object.

P

parent component. All components in each
TeamConnection family, except the root component, are
created in reference to an existing component. The
existing component is the parent component. See also
child component and component.

parent part. Any part in a build tree that has a child
defined. See also part and child part.

parser. A tool that can read a source file and report

back a list of dependencies of that source file. It frees a
developer from knowing the dependencies one part has
on other parts to ensure a complete build is performed.

part. A collection of data that is stored by the family
server and retrieved by a path name. They include text
objects, binary objects, and modeled objects. These
parts can be stored by the user or the tool, or they can
be generated from other parts, such as when a linker
generates an executable file.

path name. The name of the part under
TeamConnection control. A path name can be a
directory structure and a base name or just a base
name. It must be unique within each release. See also
base name.

pool. See build pool.

pop-up menu. A menu that, when requested, appears
next to the object it is associated with.

prerequisite work areas. If a part is changed to
resolve more than one defect or feature, the work area
referenced by the first change is a prerequisite of the
work area referenced by later changes. A work area is a
prerequisite to another work area if:

e Part changes are checked in, but not committed, for
the first work area.

* One or more of the same parts are checked out,
changed, and checked in again for the second work
area.

Glossary 73

problem tracking. The process of tracking all reported
defects through to resolution and all proposed features
through to implementation.

process. A combination of TeamConnection
subprocesses, configured by the family administrator,
that controls the general movement of TeamConnection
objects (defects, features, work areas, and drivers) from
state to state within a component or release. See also
subprocess and state.

Q

query. A request for information from a database, for
example, a search for all defects that are in the open
state. See also default query and search.

R

raw format. Information retrieved on the report
command that has the vertical bar delimiter separating
field information, and each line of output corresponds to
one database record.

refresh. This TeamConnection action updates a work
area with any changes from the release, and it also
freezes the work area, if it is not already frozen.

relative path name. The name of a directory or a part
expressed as a sequence of directories followed by a
part name, beginning from the current directory.

release. A TeamConnection object defined by a user
that contains all the parts that must be built, tested, and
distributed as a single entity.

restricted authority. The limitation on a user’s ability
to perform certain actions at a specific component.
Authority can be restricted by the superuser, the
component owner, or a user with AccessRestrict
authority. See also authority.

root component. The initial component that is created
when a TeamConnection family is configured. All
components in a TeamConnection family are
descendants of the root component. Only the root
component has no parent component. See also
component, child component, and parent component.

S

search. To scan one or more data elements of a set in
a database to find elements that have certain
properties.

serial development. While a user has parts checked
out from a work area, no one else on the team can
check out the part. The user develops new material
without interacting with other developers on the project.
TeamConnection provides the opportunity to hold the
part until the user is sure that it integrates with the rest

74 Toolbuilder's Development Guide

of the application. Thus, the lock is not released until
the work area as a whole is committed. Contrast with
concurrent development. See also work area.

server. A workstation that performs a service for
another workstation.

shared part.
releases.

A part that is contained in two or more

shell script. A series of commands combined in a file
that carry out a function when the file is run.

SID. The name of a version of a driver, release, or
work area.

sizing record. A status record created for each
component-release pair affected by a proposed defect
or feature. The sizing record owner must indicate
whether the defect or feature affects the specified
component-release pair and the approximate amount of
work needed to resolve the defect or implement the
feature within the specified component-release pair.

stanza format. Data output generated by the Report
command in which each database record is a stanza.
Each stanza line consists of a field and its
corresponding values.

state. Work areas, drivers, features, and defects move
through various states during their life cycles. The state
of an object determines the actions that can be
performed on it. See also process and subprocess.

subprocess. TeamConnection subprocesses govern
the state changes for TeamConnection objects. The
design, size, review (DSR) and verify subprocesses are
configured for component processes. The track,
approve, fix, driver, and test subprocesses are
configured for release processes. See also process and
State.

superuser. This privilege lets a user perform any
action available in the TeamConnection family.

system administrator. A user who is responsible for
all system-related tasks involving the TeamConnection
server, such as installing, maintaining, and backing up
the TeamConnection server and the database it uses.

T

task list. The list of tasks displayed in the Tasks
window. The user can customize this list to issue
requests for information from the server. Tasks can be
added, modified, or deleted from the lists.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

TeamConnection client. A workstation that connects
to the TeamConnection server by a TCP/IP connection
and that is running the TeamConnection client software.

TeamConnection part. A part that is stored by the
TeamConnection server and retrieved by a path name,
release, type, and work area. See also part, common
part, and type.

TeamConnection superuser. See superuser.

tester. A user responsible for testing the resolution of
a defect or the implementation of a feature for a specific
driver of a release and recording the results on a test
record.

test record. A status record used to record the
outcome of an environment test performed for a
resolved defect or an implemented feature in a specific
driver of a release.

track subprocess. An attribute of a TeamConnection
release process that specifies that the change control
process for that release will be integrated with the
problem tracking process.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communications protocols that
support peer-to-peer connectivity functions for both local
and wide area networks.

type. All parts that are created through the
TeamConnection GUI or on the command line will show
up in reports with the type of TCPart as the part type.
The TeamConnection GUI and command line can only
check in, check out, and extract parts of the type
TCPart.

Note: Parts created through an API can have other
specified types. Refer to the Commands
Programming Reference for more information.

U

user exit. A user exit allows TeamConnection to call a
user-defined program during the processing of
TeamConnection transactions. User exits provide a
means by which users can specify additional actions
that should be performed before completing or
proceeding with a TeamConnection action.

user ID. The identifier assigned by the system
administrator to each TeamConnection user.

V

verification record. A status record that the originator
of a defect or a feature must mark before the defect or
feature can move to the closed state. Originators use
verification records to verify the resolution or
implementation of the defect or feature they opened.

version. (1) A specific view of a driver, release, or
work area. (2) A revision of a part.

version control. The storage of multiple versions of a
single part along with information about each version.

view. An alternative and temporary representation of
data from one or more tables.

W

work area. An object in TeamConnection that you
create and associate with a release. When the work
area is created, you see the most current view of the
release and all the parts that it contains. You can check
out the parts in the work area, make modifications, and
check them back into the work area. You can also test
the modifications without integrating them. Other users
are not aware of the changes that you make in the work
area until you integrate the work area to the release.
While you work on files in a work area, you do not see
subsequent part changes in the release until you
integrate or refresh your work area.

working part. The checked-out version of a
TeamConnection part.

Y

year 2000 ready. IBM VisualAge TeamConnection is
Year 2000 ready. When used in accordance with its
associated documentation, TeamConnection is capable
of correctly processing, providing and/or receiving date
data within and between the twentieth and twenty-first
centuries, provided that all products (for example,
hardware, software and firmware) used with the product
properly exchange accurate date data with it.

Glossary 75

Part Number:

on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

SC34-4553-00

