
IBM VisualAge TeamConnection Enterprise Server

Administrator’s Guide
Version 3.0

SC34-4551-01

IBM

IBM VisualAge TeamConnection Enterprise Server

Administrator’s Guide
Version 3.0

SC34-4551-01

IBM

Second Edition (October 1998)

Note
Before using this document, read the general information under “Notices” on page xi.

This edition applies to Version 3.0 of the licensed program IBM TeamConnection and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Order publications by phone or fax. The IBM Software Manufacturing Company takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, address your comments
to:

IBM Corporation
Attn: Information Development
Department T99B/Building 062
P.O. Box 12195
Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-0206.

If you have comments about the product, address them to:

IBM Corporation
Attn: Department TH0/Building 062
P.O. Box 12195
Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-4914.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 1995, 1996, 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Notices . xi

Trademarks . xiii

About this book . xv
How this book is organized xv
Conventions . xvi
Tell us what you think . xvii

Part 1. Introducing IBM VisualAge TeamConnection Enterprise Server 1

Chapter 1. An introduction to TeamConnection 3
TeamConnection definitions 4

TeamConnection’s client/server architecture 4
TeamConnection database 5
Interfaces . 5
Families. 5
Users and host lists . 5
Parts. 6
Components . 7
Releases . 7
Work areas . 8
Drivers . 9
Defects and features . 9
Processes . 9
Build . 11
Packaging . 11

Hardware and software requirements 12
Requirements for TeamConnection for AIX 12
Requirements for TeamConnection for HP-UX 14
Requirements for TeamConnection for Solaris 16
Requirements for TeamConnection for OS/2. 18
Requirements for TeamConnection for Windows 21
Requirements for MVS build servers 22

Chapter 2. Administrator Tasks 23
System Administrators . 24
Family Administrators . 25
Build Administrators . 25

Part 2. Designing and creating your TeamConnection environment 27

Chapter 3. Creating your TeamConnection family 29

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 iii

Planning your families . 29
DB2 considerations . 29

DB2 instances . 30
Database naming conventions 30
Database configuration parameters 31

Creating a family . 32
Using the family properties notebook 34

Required . 35
Configurable fields . 37
Processes . 38
User exits . 38
Groups . 39

Adding an existing family to the Family Administrator window 39
For further information . 40

Chapter 4. Starting and stopping the servers 41
Specifying the number of daemons to start 41
Setting up the mail facility . 42
Starting the servers . 42

Using the Family Administrator GUI 42
Using teamcd . 44

Stopping the servers . 46

Chapter 5. Setting up your family structure 47
Planning your components 47

Organizing the component hierarchy 47
Determining component ownership 49
Naming the components 50
Determining access to components 50

Planning your releases. 50
Relating releases with components. 51
Selecting serial or concurrent development 52
Controlling database growth 52
Naming your releases . 53

Planning your processes . 53
Component processes . 54
Release processes . 55
How processes might change during development 57
Using the driver subprocess 58

Creating components and releases. 59
Creating components . 59
Creating releases . 60
Creating a new release from an old release 61

Chapter 6. Preparing for your users 63
Planning for user IDs . 63

Host only . 63
Password only . 64
Password or host . 64

iv Administrator’s Guide

None . 64
Login managers . 65

Creating user IDs . 66
Adding and modifying passwords 67
Planning for host lists . 68
Creating host list entries . 69
Planning for user access to TeamConnection data. 70

What are the TeamConnection authority levels? 71
What are authority groups? 72

Creating or modifying authority groups 72
Granting authority to users 74

Granting or restricting access 76
Removing an entry from an access list 76

Planning for user notification 77
What are interest groups?. 78

Creating or modifying interest groups 78
Working with notification lists 80

Displaying interest groups. 80
Adding an entry to a notification list 81
Removing an entry from a notification list. 82

Chapter 7. Working with configurable fields 83
Defining configurable field types. 85
Defining dependent relationships between configurable field types 87
Defining configurable fields 88

Creating and modifying configurable fields 89
Displaying configurable field properties 92

Changing report formats . 93
The stanza report . 93
The table report . 96

Chapter 8. Configuring family processes 99
Planning your changes. 99
Modifying or creating configurable processes 99

Chapter 9. Providing user exits 103
Writing user exit programs 104
Environment file . 110
Setting up user exits . 111
Configuring user exit parameters 113
Sample user exit programs 115

Chapter 10. TeamConnection shadows 117
Shadow types. 117
Shadow properties . 118
Shadow actions . 120
When does shadowing happen 120
Writing shadowing programs 121

Shadowing program interface 121

Contents v

Shadowing program requirements 122
Shadowing program output 123
Sample shadowing program 123

Part 3. Maintaining the TeamConnection server 125

Chapter 11. Maintaining your TeamConnection environment 127
Changing the age of defects and features 128

The age utility. 128
The resetAge utility . 129

Resolving TeamConnection errors 129
Using the system error log (syslog.log) 129
Using the audit log (audit.log) 130
Using the trace facility . 136

Backing up the TeamConnection database 137

Chapter 12. Enhancing SQL performance 139
Collecting statistics using the RUNSTATS utility 139
Analyzing statistics . 140
Reorganizing table data . 141
Applying these techniques to TeamConnection 142

When REORG, RUNSTATS, and REBIND do not improve performance . . . 142
Table spaces and buffer pools 143

Configuration and tuning . 143

Chapter 13. Monitoring family use 145
Using the server daemon monitor 145

Using the monitor on the Family Servers window 145
Using the monitor command 147
Monitoring the activity of the server daemons 149
Detecting time-consuming requests 149
Monitoring server daemon problems 150

Using the license monitor . 150
How the license monitor counts users 151
Using the tclicmon command. 152
Reporting highest uses. 153
Displaying a full use report 154

Chapter 14. Server tools . 159
Using tcqry. 159
Using tcupdb . 160

Part 4. Appendixes . 161

Appendix A. Family administration commands 163
Creating a family database 163
Creating an initial superuser for a family 164
Creating or modifying authority groups 165

vi Administrator’s Guide

Editing the authorit.ld file 165
Reloading the authority table 166

Creating or modifying interest groups 167
Editing the interest.ld file 167
Reloading the interest table 167

Configuring component or release processes 168
Editing the comproc.ld and relproc.ld files 168
Reloading the configurable process tables 170

Defining configurable field types. 170
Reloading the config table 172
Updating database views with new configurable field information 173

Changing report formats . 174
Updating TargetView and ConfigPartView Reports. 178

Setting up user exits . 178
Editing the userExit file. 178
Creating customized parameter lists 180

Rebinding the family database 180

Appendix B. Configurable field types 181
Configurable field types . 181

Appendix C. User exit parameters 191
Parameters passed to user exit programs 191
User exit parameter definitions 212

Appendix D. Environment Variables 225
Setting environment variables 231

Appendix E. TeamConnection NLS and DBCS considerations 233
Overview of TeamConnection NLS and DBCS support 233

Language and culture sensitive information in TeamConnection 233
Supported locales (languages and code pages) 235

Characteristics and limitations of NLS and DBCS support 240
No conversion of code points when exchanging data 240
Exceptions to the handling of characters in TeamConnection 242
All clients in the same host must use the same language (Intel only) 244
Untraslated strings that are visible to the users. 244
DBCS Limitations . 244

Installation, administration, and runtime issues 245
Installation issues related to NLS and DBCS 245
Family administration issues 248
Client runtime issues . 249

Appendix F. Worksheets . 251
Authority groups worksheet 251
Interest groups worksheet . 256
Configurable processes worksheets 261

Service and Support . 263

Contents vii

VisualAge TeamConnection Services! 263
VisualAge TeamConnection Support! 263

IBM Lotus Passport Advantage Program 263
DB2 Service Maintenance and Technical Library 263
For North American Customers 264
Support for Customers Outside North America 265

Bibliography . 267
IBM VisualAge TeamConnection Enterprise Server library 267
TeamConnection technical reports 268
DB2 . 268
Related publications . 269

Glossary . 271

Index . 281

Readers’ Comments — We’d Like to Hear from You 287

viii Administrator’s Guide

Figures

1. A sample TeamConnection client/server network 4
2. Sample of a component hierarchy 7
3. Parts, releases, and components. 8
4. Family Properties notebook 35
5. Family Servers window 43
6. A hierarchy representing product organization 48
7. A hierarchy showing parallel components 48
8. Components with more than one parent 49
9. A hierarchy showing component ownership 50

10. The release-component relationship. 51
11. Using the driver subprocess 58
12. Create Components window 59
13. Create Releases window 60
14. Create User window . 66
15. Add Host window . 69
16. Granting authority to other users 70
17. Authority Group Settings window 73
18. Show Authority Actions window 75
19. Restrict Access window 76
20. Remove Access window 77
21. Interest Group Settings window 79
22. Show Interest Actions window. 81
23. Add Notification window. 81
24. Remove Notification window 82
25. Field Type window . 86
26. Set Condition window 88
27. Release Configurable Fields window 90
28. New Field window. 91
29. Sample stanza report displayed after adding configurable fields 94
30. Stanza View Format Settings 95
31. Sample table report displayed after adding configurable fields 96
32. Table View Format Settings 97
33. Component Process Settings window 100
34. User Exit Settings. 112
35. Pre-Check window . 113
36. Pre-Check window for PartAdd 115
37. Sample of an audit log file 131
38. Family Servers window 146
39. Sample report format after adding configurable fields 177

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 ix

x Administrator’s Guide

Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact the Site Counsel, IBM Corporation, P.O. Box 12195,
3039 Cornwallis Road, Research Triangle Park, NC 27709-2195, USA. Such
information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for
it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the warranties
of merchantability and fitness for a particular purpose.

IBM may change this publication, the product described herein, or both. These changes
will be incorporated in new editions of the publication.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are fictitious
and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 xi

xii Administrator’s Guide

Trademarks

The following terms are trademarks of International Business Machines Corporation in
the United States and/or other countries:

AIX® NetView®
C/370™ OpenEdition®
C Set ++® Operating System/2®
DB2® OS/2®
DB2 Universal Database® SOM®
IBM® SOMobjects™
MVS™ TeamConnection™
MVS/ESA™ VisualAge®
MVS/XA™ XGA

Lotus and Lotus Notes are registered trademarks and Domino is a trademark of Lotus
Development Corporation.

Tivoli, Tivoli Management Environment, and TME 10 are trademarks of Tivoli Systems
Inc. in the United States and/or other countries.

The following terms are trademarks of other companies:

HP-UX 9.*, 10.0 and 10.01 for HP 9000 Series 700 and 800 computers are X/Open
Company UNIX 93 branded products. HP-UX 10.10 and 10.20 for HP 9000 Series 700
and 800 computers are X/Open Company UNIX 95 branded products.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are registered trademarks of Intel Corporation.

Microsoft, Windows, Windows NT and the Windows logo are registered trademarks of
Microsoft Corporation.

Java, HotJava, Network File System, NFS, Solaris and the Sun logo are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Netscape Navigator is a U.S. trademark of Netscape Communications Corporation.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Reader, and PostScript are
trademarks of Adobe Systems Incorporated.

Other company, product, and service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 xiii

xiv Administrator’s Guide

About this book

This book is part of the documentation library supporting the IBM VisualAge
TeamConnection Enterprise Server licensed programs. It is written for persons who
need to perform the following tasks:

v Set up TeamConnection databases and administer TeamConnection families.

v Create and administer configurable fields and user exits.

v Maintain TeamConnection databases or migrate a database to TeamConnection
version 3.

This book is available in PDF format. Because production time for printed manuals is
longer than production time for PDF files, the PDF files may contain more up-to-date
information. The PDF files are located in directory path nls\doc\enu (Intel) or
softpubs/en_US (UNIX). To view these files, you need a PDF reader such as Acrobat.

Before using this book, refer to the TeamConnection Installation Guide, available in
softcopy format on the installation CD. The Installation Guide contains instructions for
installing a TeamConnection server. The user who needs to install only a
TeamConnection client should follow the installation instructions in Getting Started with
the TeamConnection Clients.

IBM VisualAge TeamConnection Enterprise Server uses DB2 Universal Database,
Enterprise Edition, version 5. Refer to the bibliography at the back of this book for a list
of publications you can use to install and administer your DB2 database system.

Note: It is not recommended that you make changes to your database by issuing
INSERT, UPDATE, or DELETE statements or by changing or deleting database
tables or the columns defined in TeamConnection database tables. Changing
your database in these ways, through the DB2 administrator tools, the DB2
command line processor, the TeamConnection migration tools, or the tcupdb tool
can corrupt your TeamConnection database. Any such changes are made at
your own risk. Please contact your IBM representative for information on the
terms of IBM customer support.

How this book is organized

This book contains the following sections:

“Part 1. Introducing IBM VisualAge TeamConnection Enterprise Server” on
page 1 presents an overview of the IBM VisualAge TeamConnection Enterprise
Server product. The information in this section should be read and understood by
everyone who is going to work with TeamConnection.

“Part 2. Designing and creating your TeamConnection environment” on
page 27 is intended for the family administrator who needs to plan for how the IBM
VisualAge TeamConnection Enterprise Server product is going to be used in the
company’s development environment. After the planning stage, the family

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 xv

administrator will use this section to learn how to do TeamConnection administrative
tasks. Before reading this section, you should be familiar with the TeamConnection
terminology and concepts presented in “Part 1. Introducing IBM VisualAge
TeamConnection Enterprise Server” on page 1.

“Part 3. Maintaining the TeamConnection server” on page 125 contains
information on maintaining your TeamConnection database, monitoring family use,
and migrating your family database to TeamConnection version 3.

This book also contains several appendixes providing more information for performing
TeamConnection administrative tasks and worksheets that can help you plan your
TeamConnection families.

Information on customer service, a bibliography, and a glossary are included at the
back of this book.

Conventions

This book uses the following highlighting conventions:

v Italics are used to indicate the first occurrence of a word or phrase that is defined in
the glossary. They are also used for information that you must replace.

v Bold is used to indicate items on the GUI.

v Monospace font is used to indicate exactly how you type the information.

v File names follow Intel conventions: mydir\myfile.txt. AIX, HP-UX, and Solaris users
should render this file name mydir/myfile.txt.

Tips or platform specific information is marked in this book as follows:

Shortcut techniques and other tips

IBM VisualAge TeamConnection Enterprise Server for OS/2

IBM VisualAge TeamConnection Enterprise Server for Windows/NT

IBM VisualAge TeamConnection Enterprise Server for Windows 95

IBM VisualAge TeamConnection Enterprise Server for AIX

xvi Administrator’s Guide

IBM VisualAge TeamConnection Enterprise Server for HP-UX

IBM VisualAge TeamConnection Enterprise Server for Solaris

Tell us what you think

In the back of this book is a comment form. Please take a few moments to tell us what
you think about this book. The only way for us to know if you are satisfied with our
books or if we can improve their quality is through feedback from customers like you.

About this book xvii

xviii Administrator’s Guide

Part 1. Introducing IBM VisualAge TeamConnection Enterprise
Server

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 1

2 Administrator’s Guide

Chapter 1. An introduction to TeamConnection

TeamConnection provides an environment and tools to make software development run
smoothly, whether your development team is small or large. Using TeamConnection,
you can communicate with and share data among team members to keep up with the
many tasks in the development life cycle, from planning through maintenance.

What does TeamConnection do for you? It takes care of the following:

v Configuration management: the process of identifying, organizing, managing, and
controlling software modules as they change over time. This includes controlling
access to your software modules and providing notification to team members as
software modules change.

v Release management: the logical organization of objects that are related to an
application. The release provides a logical view of objects that must be built, tested,
and distributed together. Releases are versioned, built, and packaged.

v Version control: the tracking of relationships among the versions of the various parts
that make up an application. Version control enables you to build your product using
stable levels of code, even if the code is constantly changing. It provides control over
which changes are available to everyone and, optionally, allows more than one
developer at a time to update a part.

v Change control: the controlling of changes to parts that are stored in
TeamConnection. TeamConnection keeps track of any part changes you make and
the reasons you make them. Your development team can build releases with
accuracy and efficiency, even as the parts evolve. The product ensures that the
change process is followed and that the changes are authorized. After changes are
made, it allows you to integrate the changes and build the application.
TeamConnection tracks all changes to the parts across multiple products and
environments.

The change control process is configurable. Your team can decide how strict the
change control should be, from loose to very tight. You can also adjust the level of
control as you move through a development cycle.

v Build support: the function that enables you to define the structure of your application
and then to create it within TeamConnection from your input parts. Independent steps
in a build can run in parallel on different servers, thus reducing your build time. You
can build applications for platforms in addition to the one TeamConnection runs
on—currently, you can use TeamConnection to build applications on AIX, HP-UX,
OS/2, Windows NT, Windows 95, Solaris, MVS, and MVS OpenEdition.

v Packaging support: the preparation of your application for electronic distribution to
other users.

This chapter defines the basic terms and concepts you need to make the most of
TeamConnection. Read this chapter first; then decide which information you need next:

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 3

Topic and description Page

Designing and creating your TeamConnection environment:

v Planning for and creating families

v Preparing for users

v Configuring fields

v Configuring processes

v Providing user exits

27

Maintaining TeamConnection:

v Setting up the mail facility

v Changing the age of defects and features

v Resolving TeamConnection errors

v Maintaining the database

125

TeamConnection definitions

The following definitions are in logical order rather than alphabetical. The User’s Guide
provides additional information about these terms.

TeamConnection’s client/server architecture

Figure 1 is an example of a network of TeamConnection clients and servers.

Figure 1. A sample TeamConnection client/server network

4 Administrator’s Guide

TeamConnection family servers control all data within the TeamConnection environment.
Data stored in a family server’s database includes:

v Text objects, such as source code and product documentation

v Binary objects, such as compiled code

v Modeled objects that are stored in the information model by tools such as VisualAge
Generator

v Other TeamConnection objects that are metadata about the other objects

A TeamConnection client gives team members access to the development information
and parts stored on the database server.

TeamConnection database

TeamConnection is built on IBM’s DB2 Universal Database. Please refer to the DB2
documentation referenced in this document’s “Bibliography” on page 267 for detailed
information on DB2 database configuration, administration, and utilities.

Interfaces

TeamConnection provides the following interfaces that you can use to access data:

v A graphical user interface based on industry standards.

v A command line interface that lets you type TeamConnection commands from a
prompt or from within TeamConnection

v A web client that you access through your web browser.

You can use any interface to do your TeamConnection work, or you can switch among
them.

Families

A family represents a complete and self-contained collection of TeamConnection users
and development data. Data within a family is completely isolated from data in all other
families. One family cannot share data with another.

See “Chapter 5. Setting up your family structure” on page 47 for more information about
families.

Users and host lists

Users are given access to the TeamConnection development data in a specific family
through their user IDs. Each family has at least one superuser, who has privileged
access to the family. The superuser gives other users the authority to perform some set
of actions on particular data. Depending on the authority granted to a user, that user
might in turn be able to grant some equal or lesser level of authority to other users.
However, the ability to grant authority for some actions is reserved to the superuser.
There are no actions which the superuser cannot perform.

Chapter 1. An introduction to TeamConnection 5

For host-based authentication, each user ID is associated with a host list, which is a list
of client machine addresses from which the user can access TeamConnection when
using that ID.

A single user can access TeamConnection from multiple systems or logins. Likewise, a
single system login can act on behalf of multiple users. The set of authorized logins for
a TeamConnection user ID makes up the user’s host list.

It is also possible to authenticate users through the use of passwords, either in place of
host lists, or as an alternative form of authentication.

See “Chapter 6. Preparing for your users” on page 63 for more information.

Parts

TeamConnection parts are objects that users and tools store in TeamConnection. They
include text objects, binary objects, and modeled objects. These parts can be stored by
the user or the tool, or they can be generated from other parts, such as when a linker
generates an executable file. Parts can also be groupings of other TeamConnection
objects for building and distribution, or simply for convenient reference. Common part
actions include the following:

Create To store a part from your workstation on the server; from that time on,
TeamConnection keeps track of all changes made to the part. Or, to create a
part to use as a place holder to store the output of a build.

Check out
To get a copy of a part so that you can make changes to it.

Check in
To put the changed part back into TeamConnection.

Extract To get a copy of the part without making changes to the current version in
TeamConnection.

Edit To change a part from within TeamConnection using a specified editor.

Build To construct an output part from parts that you have defined to
TeamConnection as input to the output part.

These are simplified definitions of part actions; there is more about the actions you can
perform against parts in the Commands Reference.

The current version of each part is stored in the TeamConnection database, along with
previous versions of each part. You can return to previous versions if you need to.

6 Administrator’s Guide

Components

Within each family, development data is organized into groups called components. The
component hierarchy of each family includes a single top component, called root, and
descendants of that root. Each child component has at least one parent component; a
child can have multiple parents.

The following figure depicts a component hierarchy.

TeamConnection uses components to organize development data, control access to the
data, and notify users when certain actions occur. Descendant components inherit
access and notification information from ancestor components. Information about the
components is stored in the database, including:

v The component’s position in its family hierarchy.

v The user who owns the component. The component owner is responsible for
managing data related to it, including defects or features.

v The users who have access to the component and the level of access each user
has. This information makes up the component’s access list.

v The users who are to be notified about changes to the component. This set of users
is called the notification list.

v The process by which the component handles defects and features.

See “Planning your components” on page 47 for more information about components.

Releases

An application is likely to contain parts from more than one component. Because you
probably want to use some of the same parts in more than one application, or in more
than one version of an application, TeamConnection also groups parts into releases. A
release is a logical organization of all parts that are related to an application; that is, all
parts that must be built, tested, and distributed together. Each time a release is
changed, a new version of the release is created. Each version of the release points to
the correct version of each part in the release.

Figure 2. Sample of a component hierarchy

Chapter 1. An introduction to TeamConnection 7

Each part in TeamConnection is managed by at least one component and contained in
at least one release. One release can contain parts from many components; a
component can span several releases. Figure 3 shows the relationships between parts,
the releases that contain them, and the components that manage them.

Each time a new development cycle begins, you can define a separate release. Each
subsequent release of an application can share many of the same parts as its
predecessor. Thus maintenance of an older release can progress at the same time as
development of a newer one. Each release follows a process by which defects and
features are handled.

See “Planning your releases” on page 50 for more information about releases.

Work areas

A release contains the latest ″official″ version of each of its parts. As users check parts
out of the releases, update them, and then check them back in, TeamConnection keeps
track of all of these changes, even when more than one user updates the same part at
the same time. To make this possible, TeamConnection uses something called a work
area.

A work area is a logical temporary work space that enables you to isolate your work on
the parts in a release from the official versions of the parts. You can check parts out to
a work area, update them, and build them without affecting the official version of the
parts in the release. After you are certain that your changes work, you integrate the
work area with the release (or commit the driver that the work area is a member of, if
you are using the driver subprocess). The integration makes the parts from your work
area the new official parts in the release.

You can do the following with work areas:

v Check out parts from a release

v Update any or all of the checked-out parts

Figure 3. Parts, releases, and components

8 Administrator’s Guide

v Get the latest copies of the parts in the release, including any changes integrated by
other users

v Get the latest copies of the parts in another work area

v Freeze the work area, making a snapshot of the parts as they exist at a particular
instant in case you need to return to it later

v Build the parts in the work area

v Move all parts back into the release by integrating the work area

Drivers

A driver is a collector for work areas. You create drivers associated with specific
releases so that you can exercise greater control over which work areas are integrated
into the release and commit the changes from multiple work areas simultaneously.

When a work area is added to a driver, it is called a driver member. A single work area
can be a member of more than one driver. By making a work area part of a driver, you
associate the parts changed in relation to that work area with the specified driver.
These parts must be members of the release associated with the driver.

Drivers enable you to place the following controls over work area integrations:

v Define and monitor prerequisite and corequisite work areas to ensure that mutually
dependent changes are integrated in proper order.

v Monitor and resolve conflicting changes to the same part (if you use concurrent
development).

v Restrict access to driver members so that they can be changed only by users with
proper authority.

Defects and features

A defect is a record of a problem to be fixed. A feature is a record of a request for a
functional addition or enhancement. Both may be associated with a work area, and both
follow the processes defined for the component and release that are associated with
the work area. TeamConnection tracks both objects through their life cycles as
developers change and commit parts.

You can use defects and features to record problems and design changes for things
other than the products you are developing under TeamConnection control. For
example, you can use defects to record information about personnel problems,
hardware problems, or process problems. You can use features to record proposals for
process improvements and hardware design changes.

Processes

An application changes over time as developers add features or correct defects.
TeamConnection controls these changes according to the processes you choose for

Chapter 1. An introduction to TeamConnection 9

your application’s components and releases. A process enforces a specific level of
control to part changes and ensures that actions occur in a specified order.

Two separate types of processes are defined: component processes, which can be
different for each component within a family, and release processes, which apply to all
activities associated with a given release. Component or release processes are built
from a number of lower-level processes, or subprocesses, that are included with the
TeamConnection product.

A defect or feature written against a component moves through successive states
during its life cycle. The TeamConnection actions that you can perform against it
depend on its current state. The component processes define these actions. You can
require users to do some, all, or none of the following for tracking defects and features:

dsrFeature
Design, size, and review changes to be made for features

verifyFeature
Verify that the features have been implemented correctly

dsrDefect
Design, size, and review fixes to be made for defects

verifyDefect
Verify that the fixes work

At the release level you can require some, all, or none of the following subprocesses:

track This subprocess is TeamConnection’s way of relating all part changes to a
specific defect or feature and a specific release. Each work area gathers all
the parts modified for the specified defect or feature in one release and
records the status of the defect or feature. The work area moves through
successive states during its life cycle. The TeamConnection actions that you
can perform against a work area depend on its current state.

You must use the track subprocess if you want to use any of the other release
subprocesses.

approval
This subprocess ensures that a designated approver agrees with the decision
to incorporate changes into a particular release and electronically signs a
record. As soon as approval is given, the changes can be made.

fix This subprocess ensures that as users check in parts associated with a work
area, an action is taken to indicate that they have completed their portion.
When everyone is done, the owner of the fix record (usually the component
owner) can change the fix record to complete. The parts are then ready for
integration.

driver A driver is a collection of all the work areas that are to be integrated with each
other and with the unchanged parts in the release at a particular time. The
driver subprocess allows you to include these changes incrementally so that

10 Administrator’s Guide

their impact can be evaluated and verified before additional changes are
incorporated. Each work area that is included in a driver is called a driver
member.

test The test subprocess guarantees that testing occurs prior to verifying that the
fix is correct within the release.

TeamConnection is shipped with several predefined processes. If these do not apply to
your organization, you can configure your own processes by defining different
combinations of subprocesses.

See “Planning your processes” on page 53 for instructions for setting and changing
processes.

Build

The TeamConnection build function automates the process of building individual parts
or entire applications, both in the work group LAN environment and on an enterprise
server. This function enables you to reliably and repeatedly build the same output from
the same inputs. You can also build different outputs from the same inputs for different
environments.

You start a build against an output part that has an associated builder. A builder is an
object that describes how to translate input parts to get the desired output, such as a
linker or compiler. An input part might have an associated parser, which determines the
dependencies for the input parts in a build.

The build function does the following:

v Tracks build times of inputs and outputs so that it builds only those parts that are out
of date themselves or that have out of date dependents. You can also force a build
regardless of the build times.

v Enables you to spread the build over multiple machines running at the same time or
into multiple processes running on a single machine, such as on MVS.

Packaging

Packaging is any of the steps necessary to distribute software and data onto the
machines where they are to be used. TeamConnection includes two tools that you can
use to automate the electronic distribution of TeamConnection-managed software and
data:

Gather An automated data mover for server or file transfer-based distribution.

Tivoli Software Distribution
A bridge utility that automates the installation and distribution of software or
data using Tivoli as the distribution vehicle.

For more information, refer to the User’s Guide.

Chapter 1. An introduction to TeamConnection 11

Hardware and software requirements

The following sections list the hardware and software requirements for each platform
supported by TeamConnection. Each section contains the following tables:

v Server hardware requirements

v Client hardware requirements

v Software requirements

The last section contains requirements for the MVS build server.

Requirements for TeamConnection for AIX

Table 1. Hardware Requirements for an AIX TeamConnection Server

Family server v Processor: IBM RS/6000 with PowerPC architecture (recommended),
such as 43P. PowerServer architecture can be used.

v Pointing device: A mouse or other pointing device

v Monitor: Any X11 graphics display supported by the RS/6000
workstation

v Memory: 128 MB minimum (256 MB recommended); more may be
needed according to number of users and database size

v Disk space:

– 500 MB for operating system and prerequisites

– 200 MB in the target file system for user data (1+ GB
recommended)

– 160 MB for TeamConnection server code

– 65 MB for TeamConnection documentation

– 200 MB for DB2

– Amount recommended by operating system for swapper space

Note: Older buses, I/O controllers, and hard drives may not provide
adequate I/O rates for a DB2 application such as TeamConnection to
demonstrate minimally acceptable performance.

v Communications support: Any token-ring or Ethernet local area
network (LAN) adapter card that supports TCP/IP and is supported by
the workstation

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

12 Administrator’s Guide

Table 1. Hardware Requirements for an AIX TeamConnection Server (continued)

Build server v Processor: IBM RS/6000 with PowerPC architecture (recommended),
such as 43P. PowerServer architecture can be used.

v Pointing device: A mouse or other pointing device

v Monitor: Any X11 graphics display supported by the RS/6000
workstation

v Memory: 64 MB memory minimum (128 MB recommended); more
may be needed according to the compilers and linkers used

v Disk space:

– 500 MB for operating system and prerequisites

– 60 MB for TeamConnection server code

– Amount recommended by operating system for swapper space

v Communications support: Any token-ring or Ethernet local area
network (LAN) adapter card that supports TCP/IP and is supported by
the workstation

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

Table 2. Hardware Requirements for an AIX TeamConnection Client

Client v Processor : IBM RS/6000 with PowerPC architecture (recommended),
such as 43P. PowerServer architecture can be used.

v Pointing device : A mouse or other pointing device.

v Monitor : Any X11 graphics display supported by the RS/6000
workstation.

v Memory : 64 MB memory minimum.

v Disk space :

– 300 MB for operating system and prerequisites

– 60 MB for TeamConnection client code

– Amount recommended by operating system for swapper space

v Communications support : Any token-ring or Ethernet local area
network (LAN) adapter card that supports TCP/IP and is supported by
the workstation.

v CD-ROM drive : A CD-ROM drive (internal or external) for installation
of the product.

Table 3. Software Requirements for TeamConnection for AIX

Server v AIX version 4.2.1 or higher version that includes TCP/IP

v Java Development Kit 1.1 (1.1.2 recommended; you can also use
1.1.4 with the April 30, 1998 fixes applied [″JDK 1.1.4 IBM build
a114–19980430″]

v A Web browser such as Netscape Navigator to display the help
panels for the GUI

Chapter 1. An introduction to TeamConnection 13

Table 3. Software Requirements for TeamConnection for AIX (continued)

Client v AIX version 4.2.1 or higher version that includes TCP/IP

v Java Development Kit 1.1 (1.1.2 or higher recommended)

v A Web browser such as Netscape Navigator to display the help
panels for the GUI

Build server v AIX version 4.2.1 or higher version that includes TCP/IP

For distribution
function

v TME 10 Software Distribution Version 3.1. Revision A (LK2T-6047-03)

v TME 10 Framework Upgrade to Version 3.1 Revision C
(LK2t-6073-02)

For bridge between
VisualAge Smalltalk
and VisualAge
TeamConnection

v TeamConnection client

v VisualAge Smalltalk Version 4.0 (4231060)

Requirements for TeamConnection for HP-UX

Table 4. Hardware Requirements for an HP-UX TeamConnection Server

Family server v Processor: Any HP 9000 Series 700 or 800 workstation

v Pointing device: A mouse or other pointing device

v Monitor: Any X11 graphics display supported by the processor

v Memory: 128 MB minimum (256 MB recommended); more may be
needed according to number of users and database size

v Disk space:

– 500 MB for operating system and prerequisites

– 200 MB in the target file system for user data (1+ GB
recommended)

– 160 MB for TeamConnection server code

– 200 MB for DB2

– Amount recommended by operating system for swapper space

Note: Older buses, I/O controllers, and hard drives may not provide
adequate I/O rates for a DB2 application such as TeamConnection to
demonstrate minimally acceptable performance.

v Communications support: Any token-ring or Ethernet local area
network (LAN) adapter card that supports TCP/IP and is supported by
the workstation

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

14 Administrator’s Guide

Table 4. Hardware Requirements for an HP-UX TeamConnection Server (continued)

Build server v Processor: Any HP 9000 Series 700 or 800 workstation

v Pointing device: A mouse or other pointing device

v Monitor: Any X11 graphics display supported by the processor

v Memory: 64 MB memory minimum (128 MB recommended); more
may be needed according to the compilers and linkers used

v Disk space:

– 500 MB for operating system and prerequisites

– 60 MB for TeamConnection build server code

– Amount recommended by operating system for swapper space

v Communications support: Any token-ring or Ethernet local area
network (LAN) adapter card that supports TCP/IP and is supported by
the workstation

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

Table 5. Hardware Requirements for an HP-UX TeamConnection Client

Client v Processor: Any HP 9000 Series 700 or 800 workstation.

v Pointing device: A mouse or other pointing device.

v Monitor: Any X11 graphics display supported by the processor.

v Memory: 64 MB memory minimum.

v Disk space:

– 300 MB for operating system and prerequisites

– 60 MB for TeamConnection client code

– Amount recommended by operating system for swapper space

v Communications support: Any token-ring or Ethernet local area
network (LAN) adapter card that supports TCP/IP and is supported by
the workstation.

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product.

Table 6. Software Requirements for TeamConnection for HP-UX

Server v HP-UX version 10.20, which includes TCP/IP

The following patches are required for DB2:

– PHSS_10556

– PHSS_10436

v Java Development Kit1.1.3

v A Web browser such as Netscape Navigator to display the help
panels for the GUI

Client v HP-UX version 10.20, which includes TCP/IP

v Java Development Kit 1.1.3

v A Web browser such as Netscape Navigator to display the help
panels for the GUI

Chapter 1. An introduction to TeamConnection 15

Table 6. Software Requirements for TeamConnection for HP-UX (continued)

Build server HP-UX version 10.20, which includes TCP/IP

For distribution
function

v TME 10 Software Distribution Version 3.1. Revision A (LK2T-6047-03)

v TME 10 Framework Upgrade to Version 3.1 Revision C
(LK2t-6073-02)

For bridge between
VisualAge Smalltalk
and VisualAge
TeamConnection

v TeamConnection client

v VisualAge Smalltalk Version 4.0 (4231060)

Requirements for TeamConnection for Solaris

Table 7. Hardware Requirements for a Solaris TeamConnection Server

Family server v Processor: SPARC or UltraSPARC workstation.

v Pointing device: A mouse or other pointing device

v Monitor: Any X11 graphics display supported by the processor

v Memory: 128 MB memory minimum (256 MB recommended); more
may be needed according to number of users and database size

v Disk space:

– 500 MB for operating system and prerequisites

– 200 MB in the target file system for user data (1+ GB
recommended)

– 200 MB for TeamConnection server code

– 65 MB for TeamConnection documentation

– 200 MB for DB2

– 100 MB for temporary space

– Amount recommended by operating system for swapper space

Note: Older buses, I/O controllers, and hard drives may not provide
adequate I/O rates for a DB2 application such as TeamConnection to
demonstrate minimally acceptable performance.

v Communications support: Any token-ring or Ethernet local area
network (LAN) adapter card that supports TCP/IP and is supported by
the workstation

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

16 Administrator’s Guide

Table 7. Hardware Requirements for a Solaris TeamConnection Server (continued)

Build server v Processor: SPARC or UltraSPARC workstation.

v Pointing device: A mouse or other pointing device

v Monitor: Any X11 graphics display supported by the processor

v Memory: 128 MB memory minimum (256 MB recommended); more
may be needed according to the compilers and linkers used

v Disk space:

– 500 MB for operating system and prerequisites

– 200 MB for TeamConnection server code

– 100 MB for temporary space

– Amount recommended by operating system for swapper space

v Communications support: Any token-ring or Ethernet local area
network (LAN) adapter card that supports TCP/IP and is supported by
the workstation

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

Table 8. Hardware Requirements for a Solaris TeamConnection Client

Client v Processor : SPARC and UltraSPARC workstation.

v Pointing device : A mouse or other pointing device.

v Monitor : Any X11 graphics display supported by the processor.

v Memory : 64 MB memory minimum.

v Disk space :

– 300 MB for operating system and prerequisites

– 60 MB for TeamConnection client code

– Amount recommended by operating system for swapper space

v Communications support : Any token-ring or Ethernet local area
network (LAN) adapter card that supports TCP/IP and is supported by
the workstation.

v CD-ROM drive : A CD-ROM drive (internal or external) for installation
of the product.

Table 9. Software Requirements for TeamConnection for Solaris

Server v Sun Solaris 2.5.1 which includes TCP/IP

The following patches are required:

– 103663-11

– 103600-13

– 103640-08

Note: Contact your Solaris service support representative for
information on obtaining and applying these patches.

v Java Development Kit 1.1 (1.1.5 or higher recommended)

v A Web browser such as Netscape Navigator to display the help
panels for the GUI

Chapter 1. An introduction to TeamConnection 17

Table 9. Software Requirements for TeamConnection for Solaris (continued)

Client v Sun Solaris 2.5.1 which includes TCP/IP

v Java Runtime Environment 1.1 (1.1.5 or higher recommended)

v A Web browser such as Netscape Navigator to display the help
panels for the GUI

Build server Solaris 2.5.1 which includes TCP/IP.

For distribution
function

v TME 10 Software Distribution Version 3.1. Revision A (LK2T-6047-03)

v TME 10 Framework Upgrade to Version 3.1 Revision C
(LK2t-6073-02)

For bridge between
VisualAge Smalltalk
and VisualAge
TeamConnection

v TeamConnection client

v VisualAge Smalltalk Version 4.0 (4231060)

Requirements for TeamConnection for OS/2

Table 10. Hardware Requirements for an OS/2 TeamConnection Server

Family server v Processor: 133 MHz Pentium-based processor or higher

v Pointing device: A mouse or other pointing device

v Monitor: V GA or higher resolution with the appropriate adapter

v Memory: 64 MB memory minimum; more may be needed according
to number of users and database size

v Disk space:

– 200 MB for operating system and prerequisites

– 200 MB for user data (1+ GB recommended)

– 60 MB for TeamConnection server code

– 200 MB for DB2

– 128 MB for swapper space (150+ MB recommended)

Note: Older buses, I/O controllers, and hard drives may not provide
adequate I/O rates for a DB2 application such as TeamConnection to
demonstrate minimally acceptable performance.

v Communications support: Network card supported by TCP/IP for
OS/2

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

18 Administrator’s Guide

Table 10. Hardware Requirements for an OS/2 TeamConnection Server (continued)

Build server v Processor: 133 MHz 486-based processor or higher

v Pointing device: A mouse or other pointing device

v Monitor: VGA or higher resolution with the appropriate adapter

v Memory: 32 MB memory minimum; more may be needed according
to compilers and linkers used

v Disk space:

– 75 MB for operating system and prerequisites

– 15 MB for TeamConnection build server code

– 45 MB for swapper space

v Communications support: Network card supported by TCP/IP for
OS/2

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

Table 11. Hardware Requirements for an OS/2 TeamConnection Client

Client v Processor: 66 MHz 486-based processor or higher

v Pointing device: A mouse or other pointing device

v Monitor: VGA or higher resolution with the appropriate adapter

v Memory: 16 MB minimum

v Disk space:

– 75 MB for operating system and prerequisites

– 25 MB for TeamConnection client code

– 32 MB for swapper space

v Communications support: Network card supported by TCP/IP for
OS/2

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

Table 12. Software Requirements for TeamConnection for OS/2

Server v One of the following:

– OS/2 Warp Version 4 (84H1426) and IBM TCP/IP Version 3.0 for
OS/2 Warp (33H9749)

– OS/2 Warp Server Version 4 (25H8002)

– OS/2 Warp Server Advanced Version 4 (25H8030)

v Java Development Kit 1.1 (1.1.4 recommended with the 1998 fixes
applied [″JDK 1.1.4 IBM build o114–19980304″])

v A Web browser such as Netscape Navigator to display the help
panels for the GUI

Chapter 1. An introduction to TeamConnection 19

Table 12. Software Requirements for TeamConnection for OS/2 (continued)

Client v Java Development Kit 1.1 (1.1.4 recommended)

v A Web browser such as Netscape Navigator to display the help
panels for the Web client and TeamConnection Merge

v One of the following:

– OS/2 Warp Version 4 (84H1426)

- IBM TCP/IP Version 3.0 for OS/2 Warp (33H9749)

– OS/2 Warp Server Version 4 (25H8002)

– OS/2 Warp Server Advanced Version 4 (25H8030)

Build server One of the following:

v OS/2 Warp Version 4 (84H1426)

– IBM TCP/IP Version 3.0 for OS/2 Warp (33H9749)

v OS/2 Warp Server Version 4 (25H8002)

v OS/2 Warp Server Advanced Version 4 (25H8030)

For distribution
function

v TME 10 Software Distribution Version 3.1. Revision A (LK2T-6047-03)

v TME 10 Framework Upgrade to Version 3.1 Revision C
(LK2t-6073-02)

For bridge between
VisualAge Smalltalk
and VisualAge
TeamConnection

v TeamConnection client

v VisualAge Smalltalk Version 4.0 (4231060)

20 Administrator’s Guide

Requirements for TeamConnection for Windows

Table 13. Hardware Requirements for a Windows TeamConnection Server

Family server v Processor: 133 MHz Pentium-based processor or higher (however,
the PowerPC is not supported)

v Pointing device: A mouse or other pointing device

v Monitor: VGA or higher resolution with the appropriate adapter

v Memory: 64 MB memory minimum; more may be needed according
to number of users and database size

v Disk space:

– 200 MB for operating system and prerequisites

– 200 MB for user data (1+ GB recommended)

– 60 MB for TeamConnection server code

– 200 MB for DB2

– 128 MB for swapper space (150+ MB recommended)

Note: Older buses, I/O controllers, and hard drives may not provide
adequate I/O rates for a DB2 application such as TeamConnection to
demonstrate minimally acceptable performance.

v Communications support: Network card supported by TCP/IP for
Windows NT

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

Build server v Processor: Any processor supported by the required version of
Windows, except the PowerPC

v Pointing device: A mouse or other pointing device

v Monitor: VGA or higher resolution with the appropriate adapter

v Memory: 32 MB memory minimum; more may be needed according
to compilers and linkers used

v Disk space:

– 75 MB for operating system and prerequisites

– 15 MB for TeamConnection build server code

– 45 MB for swapper space

v Communications support: Network card supported by TCP/IP for
Windows NT or Windows 95

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

Chapter 1. An introduction to TeamConnection 21

Table 14. Hardware Requirements for a Windows TeamConnection Client

Client v Processor: Any personal workstation supported by the operating
system, except the PowerPC

v Pointing device: A mouse or other pointing device

v Monitor: VGA or higher resolution with the appropriate adapter

v Memory: 16 MB minimum

v Disk space:

– 75 MB for operating system and prerequisites

– 25 MB for TeamConnection client code

– 32 MB for swapper space

v Communications support: Any network card supported by the above
workstation that supports TCP/IP

v CD-ROM drive: A CD-ROM drive (internal or external) for installation
of the product

Table 15. Software Requirements for TeamConnection for Windows

Server v Microsoft Windows NT 4.0 which includes TCP/IP

v Java Development Kit 1.1 (1.1.6 recommended)

v A Web browser such as Netscape Navigator to display the help
panels for the GUI

Client v Java Runtime Environment 1.1 (1.1.6 recommended)

v A Web browser such as Netscape Navigator to display the help
panels for the Web client and TeamConnection Merge

v One of the following:

– Microsoft Windows 95

– Microsoft Windows NT 4.0, which includes TCP/IP

Windows NT build
server

Microsoft Windows NT 4.0 which includes TCP/IP

For distribution
function

v TME 10 Software Distribution Version 3.1. Revision A (LK2T-6047-03)

v TME 10 Framework Upgrade to Version 3.1 Revision C
(LK2t-6073-02)

For bridge between
VisualAge Smalltalk
and VisualAge
TeamConnection

v TeamConnection client

v VisualAge Smalltalk Version 4.0 (4231060)

Requirements for MVS build servers

The following are software requirements for the MVS build server:

v TCP/IP Version 3.2 for MVS

v OS/390 R3 LE

22 Administrator’s Guide

Chapter 2. Administrator Tasks

This chapter briefly describes the tasks that a TeamConnection administrator performs.
Administrators’ responsibilities vary widely according to the needs of your development
environment and the size and complexity of your network. The tasks explained in this
book can be performed by a single system administrator or by two or more
administrators. One way to distinguish administrators’ roles is by function, as follows:

System administrator
Has superuser access to the family server and database administration access
to the database management system. This administrator is responsible for the
following:

v Installing and maintaining the TeamConnection server

v Maintaining and backing up the database used by TeamConnection

Note: On UNIX systems, the system administrator must also have root access
to the host machine.

Family administrator
Has superuser access to the family server and database administration access
to the database management system. This administrator is responsible for the
following:

v Planning and configuring TeamConnection for one or more families

v Managing user access to one or more families

v Maintaining one or more families

v Creating and updating configurable fields

v Configuring release and component processes for a family

v Creating and updating user exits

v Monitoring the user activity of a family

Build administrator
This administrator is responsible for the following:

v Setting up and maintaining build servers

v Planning for builds

v Creating builders and parsers

v Starting and stopping build servers

v Defining pools

v Monitoring build performance

v Creating driver members

v Committing and completing drivers

v Extracting releases

v Packaging and distributing applications

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 23

System Administrators

System administrators are responsible for installing the TeamConnection server
software, creating user accounts for TeamConnection families, updating network and
services configuration files for TCP/IP and socket addresses used by families and build
agents, preparing the TeamConnection client software for LAN installation (if your
installation plans to make the client software available over a LAN), starting and
stopping the servers, and maintaining the TeamConnection databases, and performing
database backups.

These responsibilities span the boundaries between TeamConnection, the operating
system, and the DB2 Universal database manager. The following table will help you
determine where to find instructions for performing these tasks.

Environment Tasks For instructions, refer to:

TeamConnection
tasks

v Installing TeamConnection

v Preparing the TeamConnection client
software for LAN installation

v Configuring TeamConnection families

v Starting and stopping the TeamConnection
servers

For installation instructions,
refer to the
TeamConnection Installation
Guide. For instructions on
configuring TeamConnection
families and starting and
stopping the servers, see
“Part 2. Designing and
creating your
TeamConnection
environment” on page 27 in
this book.

Operating system
tasks v Creating user accounts for TeamConnection

families (for multiuser operating systems)

v Updating network and services configuration
files for TCP/IP address and socket port
numbers used by families and build servers

v Enabling the syslog to capture system and
database messages

Your operating system
user’s or administrator’s
guide.

Database
manager tasks

v Installing the DB2 Universal Database

v Starting and stopping the database manager

v Maintaining the database

v Database backup and recovery

For installation instructions,
refer to the IBM DB2
Universal Database Quick
Beginnings manual
appropriate to your
platform. For database
administration, refer to the
IBM DB2 Universal
Database Administration
Guide.

24 Administrator’s Guide

|
|
|
|
|
|
|

One particularly important function of a system administrator is maintaining
the TeamConnection databases. Your TeamConnection database needs to be
backed up regularly using the DB2 backup utilities available from the DB2
Control Center or the command line processor. See “Backing up the
TeamConnection database” on page 137 for instructions.
Note: It is not recommended that you make changes to your database by
issuing INSERT, UPDATE, or DELETE statements or by changing or deleting
database tables or the columns defined in TeamConnection database tables.
Changing your database in these ways, through the DB2 administrator tools,
the DB2 command line processor, the TeamConnection migration tools, or the
tcupdb tool can corrupt your TeamConnection database. Any such changes
are made at your own risk. Please contact your IBM representative for
information on the terms of IBM customer support.

Family Administrators

If your TeamConnection environment includes more than one family, you might consider
assigning one family administrator to each family. Family administrators are responsible
for planning and creating the component structure and releases to be used in your
family, configuring the processes to be used for the components and releases, creating
user IDs and managing their access to the family, and creating configurable fields and
user exits.

“Part 2. Designing and creating your TeamConnection environment” on page 27
contains instructions for completing each of these tasks.

Build Administrators

TeamConnection provides build environments for most of its platforms. If you have a
large and complex project, or your development efforts require you to build on multiple
platforms, it may be beneficial for you to assign a build administrator for
TeamConnection or for each TeamConnection family. Build administrators are
responsible for installing and maintaining the build servers, configuring your build
environment, creating build scripts and parsers, monitoring build performance, and
customizing packaging and distribution scripts.

The TeamConnection User’s Guide explains how to create and maintain a build
environment.

Chapter 2. Administrator Tasks 25

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

26 Administrator’s Guide

Part 2. Designing and creating your TeamConnection environment

This section is intended for the family administrator who needs to plan for how the
TeamConnection product is going to be used in the company’s development
environment. After the planning stage, the family administrator will use this section to
learn how to do TeamConnection administrative tasks.

Before reading this section, you should be familiar with the TeamConnection
terminology and concepts presented in “Part 1. Introducing IBM VisualAge
TeamConnection Enterprise Server” on page 1.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 27

28 Administrator’s Guide

Chapter 3. Creating your TeamConnection family

This chapter contains information to help you plan for your TeamConnection family. It
also provides instructions for creating the family, or families, that your development
organization will use.

Planning your families

Careful planning of the families that your organization will use is an important first step
in preparing to use TeamConnection. First, decide how many families you will need.
The following will help you decide:

v Data cannot be shared between families, so group all development projects that
share source data within the same family.

For example, you have several applications under maintenance or development, and
these applications share some source code, such as a utility subroutine library. If you
create a family for each application, each family must maintain a copy of the source
code for the library. If you create one family for all the applications, they can share a
single copy of the source code.

When looking at the data your projects share, consider not just the data they share
today, but what they might be sharing in the future. If your development projects are
going to remain separate, create individual families.

v You can create new families as your needs evolve over time.

v The more families you have, the more administrative work you will have.

Keep in mind that these are merely guidelines. If it is not clear whether you need one or
more than one family, consider starting with one. You can always create another family
later.

You must also decide on a name for the family. You want the name to uniquely identify
the purpose of the family. For example, you might use your product name or an
abbreviation of your product name. Another consideration is what case to use—lower,
upper, or mixed. Mixed case is not recommended because it is more difficult to
remember. You might want to ask your users what case they prefer. See “Database
naming conventions” on page 30 for more information about database names.

DB2 considerations

Before you create a TeamConnection family, you need to be aware of certain DB2
considerations concerning DB2 instances, database naming conventions, and database
configuration parameters

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 29

DB2 instances

It is recommended that the databases for each TeamConnection family be placed in a
separate DB2 instance. By following this recommendation, you can assure that if an
instance is stopped, only one TeamConnection family is affected. It also enables you to
tune the performance for one instance while affecting only one TeamConnection family.

You need to have at least 100 MB of free disk space in the file system where the family
database is to be created.

On Intel platforms, it is recommended that you create only one DB2 instance
per (physical) server. Because it is recommended that you have only one
family per instance, you should have only one family per (physical) server.

On UNIX platforms, use the sample .profile for each family that you create.
This .profile contains DB2 environment variables that you need to customize
before you create a family. One of these variables, DB2INSTANCE, defines
the DB2 instance in which the family is to be created. DB2INSTANCE must
be set in the profile for the new family and should point to the new DB2
instance. Use a different name for the DB2 instance and the TeamConnection
family. The sample profile is located in
$TC_HOME/install/$LANG/profile.family.

If you already have a family running on an existing DB2 instance, it is necessary to
create another DB2 instance for a new family. Refer to DB2 Quick Beginnings for
information on how to create a new DB2 instance.

Database naming conventions

DB2 places certain restrictions on database names. Because the TeamConnection
family name corresponds to the name of the DB2 database, these DB2 restrictions
apply to TeamConnection families as well.

The name you specify:

v Can contain 1 to 8 characters

v Cannot be any of the following:

– USERS

– ADMINS

– GUESTS

– PUBLIC

– LOCAL

v Cannot begin with the following:

– IBM

– SQL

30 Administrator’s Guide

– SYS

v Cannot include accented characters.

v To avoid potential problems, do not use the special characters @, #, and $ in a
database name if you intend to have a client remotely connect to a host database.
Also, because these characters are not common to all keyboards, do not use them if
you plan to use the database in another country.

v Be aware of case-sensitivity on your platform:

– On OS/2, use uppercase names.

– On Windows 95 and Windows NT, use any case.

– On UNIX, use lowercase names.

Database configuration parameters

When you create a new family, TeamConnection creates a DB2 database and sets the
following values for certain database configuration parameters. Use caution when
modifying the values to which TeamConnection sets these parameters.

APPLHEAPSZ = 1280
This parameter defines the number of private memory pages available to be
used by the database manager on behalf of a specific agent or subagent.

BUFFPAGE = 12000
This parameter controls the size of a buffer pool when the CREATE
BUFFERPOOL or ALTER BUFFERPOOL statement is run.

DBHEAP=2400
This parameter indicates the maximum amount of space that the catalog cache
can use from the database heap (dbheap). The catalog cache is used to store
table descriptor information that is used when a table, view or alias is
referenced during the compilation of an SQL statement.

DLCHKTIME = 1000
This parameter defines the frequency at which the database manager checks
for deadlocks among all the applications connected to a database.

LOGFILSIZ = 4000
This parameter determines the number of pages for each of the configured
logs. A page is 4KB in size.

LOGPRIMARY = 5
This parameter specifies the number of primary logs that will be created.

LOGSECOND = 30
This parameter specifies the number of secondary log files that are created
and used for recovery log files (only as needed).

Chapter 3. Creating your TeamConnection family 31

On OS/2, the following additional database parameters are set when you
create a family. The value for the DBHEAP parameter is set to a different
value on OS/2 than on the remaining server platforms.

APP_CTL_HEAP_SZ=128
This parameter determines the maximum size, in 4 KB pages, for
the application control shared memory. Application control heaps
are allocated from this shared memory.

CATALOGCACHE_SZ=32
This parameter sets the catalog cache size. The catalog cache is
used to store table descriptor information that is used when a table,
view or alias is referenced during the compilation of an SQL
statement.

DBHEAP=600
This parameter indicates the maximum amount of space that the
catalog cache can use from the database heap (dbheap).

LOCKLIST=50
This parameter indicates the amount of storage that is allocated to
the lock list. There is one lock list per database and it contains the
locks held by all applications concurrently connected to the
database.

MAXAPPLS=32
This parameter specifies the maximum number of concurrent
applications that can be connected (both local and remote) to a
database.

TeamConnection leaves all other DB2 database configiration parameters at their DB2
default values.

Creating a family

An initial family, called testfam, is configured during the installation of the
TeamConnection server. This family usually serves as a test family so that you can
verify that TeamConnection is working properly. You can use this family to explore and
learn about TeamConnection. Eventually, you will want to create another family for use
during application development.

If you create more than one family, TeamConnection places each in a separate
directory. Each family requires its own audit log, user exit, mail queue, and security and
configurable field information, and therefore cannot share a directory with another
family.

Each family has its own unique database. If you create more than one family on a
single machine, they use the same database manager to access the database. If you
want to install families on separate machines, you need a TeamConnection and DB2
server on each machine.

32 Administrator’s Guide

|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

At a minimum, you will provide the following information when you create your family:

v The name of the family

v The fully qualified path name of the directory where you want the family configuration
information stored

v The port address of the family server

v The level of security to use for the family

v The login and client host information for the first superuser for the family

TeamConnection provides a Family Administrator GUI for creating families and for
performing other family administrative tasks. You can access this GUI only from a family
server machine.

The family administrator GUI is capable of working with one or more families at a time.
However, it is recommended that for novice UNIX users, you should work with only one
family in family administrator GUI, the family ID from where this tool is started. Then,
later on, for advanced users, you can create a separate user ID just to manage the
family administrator GUI to control multiple families.

To create a TeamConnection family using the Family Administrator GUI, follow these
steps:

1. Before you begin, define your family name in the TCP/IP hosts file and the port
number for your database in the TCP/IP services file. See the Installation Guide for
information on setting up TCP/IP files.

2. Do one of the following to display the TeamConnection Family Administrator
window:

v In OS/2, from the TeamConnection Group folder on the desktop, double-click on
the Family Administrator icon.

v In Windows NT 4.0, Select TeamConnection Family Administrator from the
Start menu.

v Type tcadmin from a command prompt.

This command has several optional parameters:

-hide Starts tcadmin, but does not open the Family Administrator GUI. You can
use this parameter in conjunction with the -start parameter to start a
family without opening the Family Administrator GUI.

-start family
Causes the family specified to be started automatically when the Family
Administrator is started.

-f directory
Specifies the location of the configuration files needed to create a new
family. The default location of these files is \nls\cfg\$LANG from the
directory where TeamConnection is installed. If you have configured the
files differently and placed them in a different directory structure, you
can use this parameter to point to the files you want to use to create a
new family.

Chapter 3. Creating your TeamConnection family 33

|

||
|
|

|
|
|

|
|
|
|
|
|
|

-log [logfilename]
When -log is specified, a log file will be generated that will contain
information on which commands are run, the output from those
commands, and error messages and stack traces for debugging
purposes. If no log file name is specified, then the file tcadmin.log will be
created. If a log file name is specified, the error log will be written to that
log file. The log file is overwritten if the same file name is specified
again.

3. Select Create Family from the Family pull-down menu.

4. When the family properties notebook appears, complete the required information
about the family. After you have set values for the family in the properties notebook,
select the OK push button.

Note: After your family is created, you can access other pages in this notebook by
selecting the family and then selecting Family → Properties .

Using the family properties notebook

The following sections introduce each page of the family properties notebook. Many of
these settings are discussed in greater detail in later chapters of this book.

34 Administrator’s Guide

|
|
|
|
|
|
|
|

|

Required

Complete the fields on the Required page of the properties notebook as follows.

Name Type a name for your family.

Path Specify the fully-qualified path name of the directory where you want the
database configuration information stored. TeamConnection places this
information in a subdirectory of the path you specify. This subdirectory has the
same name as the family. If you specify c:\proddev (for Intel) or /proddev (for
UNIX) as the path name, for example, TeamConnection places all files related
to the family in the directory path c:\proddev\yourDBName (Intel) or
/proddev/yourDBName (UNIX).

Note: If a directory for the database name you specify already exists, you will
need to delete it before you proceed. This procedure will fail if the
directory already exists.

Figure 4. Family Properties notebook

Chapter 3. Creating your TeamConnection family 35

Port Specify the TCP/IP port address that you set in your TCP/IP services file.

Mailer Specify the name of the mail routine you want to use to notify users of actions
they need to be informed of. See “Setting up the mail facility” on page 42 for
information on setting up the mail routine for notification.

Security level
Select a level of security from the list box. Choose one of the following:

Host-only
A valid combination of the system login ID, TeamConnection user ID,
and host name must be used to obtain access to the family. This is
the default level of security.

Password-only
A user must log in to and log off of TeamConnection and supply a
password in one of the following ways:

v Select Login from the File menu of the Tasks window.

v Issue the command teamc tclogin from a command prompt.

When the user logs in to the family, the family will send back a token
associated with that user from that client. The server will check the
attached token and, if valid, will proceed to perform the requested
action.

If you specify the password-only option, you will need to specify a
password for each TeamConnection user. See “Chapter 6. Preparing
for your users” on page 63 for information on creating users.

Password-or-host
The user can use either the password-only function if he or she has a
password or the host-only function if he or she has a valid host list
entry. This level of security is useful for teams in which particular
team members may be remote or mobile and have changing IP
addresses. If the user supplies a valid password, then
TeamConnection uses the password to admit access to the family. If
the user either does not supply a password or supplies an incorrect
password, then TeamConnection checks the user’s host list entry to
admit access.

None Any user can access TeamConnection. Neither a password nor a
valid host list entry is required.

See “Planning for user IDs” on page 63 for information on how to set up user
IDs for the security level you select. See “Login managers” on page 65 for
information on starting and stopping login managers for password-only and
password-or-host security.

Minimum password length
Use this field to set the minimum number of characters to be used for
passwords. The default password length is 8, the minimum is 1, and the
maximum length is 32.

36 Administrator’s Guide

Maximum invalid attempts
Use this field to set the number of times users can attempt to log in before
TeamConnection deactivates the user’s ID. If this happens, a superuser must
reactivate the ID before the user can attempt to log in again.

Login Specify a user ID for the superuser for the family. For Intel platforms, use the
value set for the TC_USER environment variable. To see this value, type the
following from a command prompt and look for the TC_USER variable:

set | more

For UNIX and Windows NT platforms, set this field to the login ID for the user.

Userid Specify the TeamConnection user ID for the superuser. If you omit this
parameter, it defaults to the value specified in the Login field. It is a good idea
to give the superuser an ID that is readily identifiable as a superuser. A good
way to do this is to preface the user ID with su_, such as su_john.

Host Specify the TCP/IP host name for the family server machine, which was set in
your TCP/IP hosts file.

To see this value, type the following from a command prompt:

hostname

Note: You do not need to use the fully-qualified host name. You can, for
example, specify myServer instead of myServer.myCompany.com.

Password
If you want to use password security, you must specify the password to be
used to verify the superuser’s access to the TeamConnection server. If you do
not specify the password for superuser access, then no one will be able to
access the database. To use password security, you need to set the Security
level field on the Security page of the family properties notebook to
password-only or password-or-host .

The password must be a minimum of 1 character long and only include
characters from the syntactic ASCII character set.

If you anticipate the need for security past the basic level of authentication
(host-only) at any time in the future, it is recommended that you supply a user
ID and password for the initial superuser when creating the family.

Configurable fields

Use the Configurable fields page of the properties notebook to define special fields for
defects, features, parts, releases, users, and work areas. See “Chapter 7. Working with
configurable fields” on page 83 for more information on using this section of the
properties notebook.

Chapter 3. Creating your TeamConnection family 37

Processes

This page of the family properties notebook provides access to two windows: one for
defining release processes and one for defining component processes. To open one of
these windows, select one of the Settings push buttons.

Use the Release Process Settings window and the Component Process Settings
window to define processes and subprocesses for releases and components defined in
your family. Complete the fields on these windows as follows. For more information
about defining and using release processes, see “Chapter 8. Configuring family
processes” on page 99.

v To see the default subprocesses defined for each release process, select a process
name from the Release Process or Component Process list. The subprocesses
included will appear highlighted in the Subprocesses list.

v To add or delete subprocesses for an existing process, follow these steps:

1. Select a process from the Release Process or Component Process list.

2. To add or delete a subprocess, select it from the Subprocesses list.

3. To save your changes, select the Apply button.

v To create a new process, follow these steps:

1. Select the New push button, type the name of the new process in the New
Release Process or New Component Process window, and then select the OK
push button.

2. From the Subprocesses list, select the subprocesses you want to include in the
new process.

3. To save the new process, select the Apply push button.

v To delete a process, select it from the Release Process or Component Process list
and then select the Delete push button. When the confirm delete window appears,
select Yes.

v To rename a process, follow these steps:

1. Select a process from the Release Process or Component Process list.

2. Select the Rename push button.

3. Type a new name in the New name field of the Rename Release Process or
Rename Component Process window, and then select the Apply push button.

User exits

Use the User Exits page of the properties notebook to define processes to be called at
certain exit points for TeamConnection actions. See “Chapter 9. Providing user exits” on
page 103 for more information on using this section of the properties notebook.

38 Administrator’s Guide

Groups

This page of the family properties notebook provides access to two windows: one for
defining authority groups and one for defining interest groups. To open one of these
windows, select one of the Settings push buttons.

Use the Authority Group Settings window and the Interest Group Settings window
to define authority and interest groups and actions for your family. Complete the fields
on these windows as follows. For more information about defining and using authority
and interest groups, see “Chapter 6. Preparing for your users” on page 63.

v To see the default actions defined for each authority or interest group, select a group
name from the Authority Group or Interest Group list. The actions included will
appear highlighted in the Actions list.

v To add or delete actions for an existing group, follow these steps:

1. Select a group from the Authority Group or Interest Group list.

2. To add or delete an action, select it from the Actions list.

3. To save your changes, select the Apply push button.

v To create a new group, follow these steps:

1. Select the New push button, type the name of the new group in New Authority
Group or New Interest Group window, and then select the OK push button.

2. From the Actions list, select the actions you want to include in the new group.

3. To save the new group, select the Apply push button.

v To delete a group, select it from the Authority Group or Interest Group list and
then select the Delete push button. When the confirm delete window appears, select
Yes.

v To rename a group, follow these steps:

1. Select a group from the Authority Group or Interest Group list.

2. Select the Rename push button.

3. Type a new name in the New name field of the Rename Authority Group or
Rename Interest Group window, and then select the Apply push button.

Adding an existing family to the Family Administrator window

You can add an icon to the Family Administrator window for an existing
TeamConnectionfamily that was defined outside the GUI. To do this, follow these steps:

1. Select Attach icon from the Family pull-down menu. The Attach Icon to Family
window appears.

2. Complete the fields on this window as follows:

Name Type the name of your family.

Path Specify the directory path where the family was created.

Port Specify the TCP/IP port address that you set in your TCP/IP services file.

Chapter 3. Creating your TeamConnection family 39

Mailer Specify the name of the mail routine you want to use to notify users of
actions they need to be informed of.

3. Select OK. An icon for that family appears.

4. After you see your family icon in the Family Administrator window, you can:

v Start and stop the family and notification servers. See “Using the Family
Administrator GUI” on page 42 for instructions.

v Change the default values in the database to better suit your needs. To change
the default values, select the family icon and then select Family → Properties .

For further information

The remaining chapters in Part 2. explain how to do the following tasks using the
Family Administrator GUI.

For information about this task, Go to this
page.

Creating or modifying authority groups 72

Creating or modifying interest groups 78

Defining configurable field types 85

Creating configurable fields 88

Changing report formats 93

Configuring processes 99

Providing user exits 111

40 Administrator’s Guide

Chapter 4. Starting and stopping the servers

This chapter explains how to start and stop TeamConnection servers using the family
administrator GUI or the teamcd command.

v The family administrator GUI enables you start and stop the family server and the
notification server.

v The teamcd command enables you to start and stop the family server, notification
server, and build server.

TeamConnection also provides a teamcbld command for starting and stopping build
servers. For more information about this command, refer to the TeamConnection User’s
Guide.

Specifying the number of daemons to start

When you start the family server, you specify the number of daemons, one or more,
that are to be started. A daemon is a process that runs as a background task and
provides access to the TeamConnection database.

Because one daemon processes only one request at a time, the number of daemons
you have running determines how quickly requests are processed. A daemon is not
available until a request completes.

To determine the number of daemons to start, you need to understand the types of
requests your users generally issue. For example, if many of the requests are for
reports, which require longer processing, you will need more daemons than if most of
the requests process quickly, such as checking files in and out.

Requests are queued and processed by the next available daemon. If the queue fills
up, requests are not queued and the server refuses the connection. This is a signal that
more daemons are needed.

If you do not explicitly specify the number of daemons when you start the family server,
only one daemon is started. We recommend that you start with the cube root of the
expected number of concurrent TeamConnection users. For example, start 3 daemons
for 27 users, 4 daemons for 64 users. To change the number of daemons to start, you
need to stop and restart the family.

Do one of the following to specify the number of daemons that you want to start:

v Use the Family Administrator GUI. For instructions, see “Using the Family
Administrator GUI” on page 42.

v Use the teamcd command. For instructions, see “Using teamcd” on page 44.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 41

Setting up the mail facility

TeamConnection users can receive notification when certain events occur within
TeamConnection. A user’s mail address is specified when a TeamConnection user ID is
created. TeamConnection uses this mail address to notify users when certain actions
occur.

In order for users to receive notification, the notification server must be running. When
you start the notification server, you specify an executable or command file that
specifies the mail exit routine that processes mail requests.

The following mail exit routine samples are shipped with TeamConnection:

v mailexit.cmd (Intel platforms)

v mailexit.exe (Intel platforms)

v mailexit.ksh (UNIX platforms)

These samples are located in the directory where TeamConnection is installed. These
samples use the sendmail command. You can either use one of these sample mail exits
or you can use a different mail facility and write your own routine.

The sendmail command is part of TCP/IP, and is installed when TCP/IP is installed. If
you use the sendmail function to send notification messages, you must configure it on
your network in order for TeamConnection client workstations to receive notification
messages from the server. Refer to your TCP/IP documentation for more information.

If you use a different mail facility, refer to the shipped mail exit routine sample,
mailexit.c, to see how you can tailor TeamConnection to support your mail facility.

In order not to lose messages when the mail exit routine fails, you can have the exit
routine return a code of 1041. This causes the notification daemon to exit and the mail
that was being processed is not deleted. If the exit routine returns any other code, the
mail that is being processed is deleted.

Starting the servers

This section explains how to start the TeamConnection family server, the notification
server, and the build server. You can start the family and notification servers using an
icon in the Family Administrator GUI or the teamcd command. You can also use the
teamcd command to start the build server. These processes can be started together
when you start the family server, or individually.

Using the Family Administrator GUI

You can follow these steps to start both the family and notification servers from the
Family Administrator GUI:

42 Administrator’s Guide

1. Do one of the following to display the TeamConnection Family Administrator
window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a prompt.

2. Double-click the family icon for the family you want to start. The Family Servers
window appears.

3. When starting the family server, specify in the Daemons field the number of
daemons you want started.

4. To start only one server, select the appropriate Start push button. To start both the
family and notification servers, select the Start Both Servers push-button.

When a server starts successfully, the message ″Press CTRL-C to stop″ appears in
the list box and the Start push button changes to Stop .

5. Minimize the Family Servers window.

Note: Do not close the Family Servers window. Closing the Family Servers window
stops the family server.

Figure 5. Family Servers window

Chapter 4. Starting and stopping the servers 43

Using teamcd

You can use the teamcd command to start the family server, notification server, and
build servers together or to start any one of these by itself.

Family server and, optionally, all servers

To start the family server from the command line, type the following from a
prompt:

teamcd [-b bldsrvr -n mailexit -m] family n

Where:

v -b bldsrvr starts a build server and specifies the name of a file that
describes the build servers that you want to start. Refer to the
TeamConnection User’s Guide for information about creating this file. You
can also use the TC_BUILD_RSSBUILDS_FILE environment variable to set
this value.

v -n mailexit starts a notification server and specifies the executable or
command file to process mail requests. You can also use the
TC_NOTIFY_DAEMON environment variable to set this value.

v -m starts the family in maintenance mode. While in maintenance mode, the
family is locked into read-only mode and prevents users from updating the
database while maintenance is being performed.

You can issue report queries and extract parts when the TeamConnection
server is running in maintenance mode, but you cannot issue any
commands that update the database. If you attempt a command that
updates the database while the server is running in maintenance mode, you
will receive an error message. You can supplement the text of this standard
error message. In the server’s /config directory, create a text file named
maintMsg and place in it any appropriate text, such as ″This
TeamConnection family is down for backups from 2am to 4am daily.″

v family is the name of the family you are starting.

v n is the number of daemons that you want to start. When starting the family
server, if this value is not typed, the default is 1. When starting only build
servers or the notification server, specify 0 for this parameter.

It is recommended that you use this command to start your build servers.
However, you can start the build server separately as described in the
TeamConnection User’s Guide.

Build server only
TeamConnection provides build servers on the following platforms: AIX,
HP-UX, Solaris, OS/2, Windows NT, Windows 95, MVS, and
MVS/OpenEdition.

Other than MVS and MVS/OE build servers, you can start build servers using
either the teamcd or teamcbld command. We recommend you use the teamcd
command as it provides better process and memory management of the build
servers.

44 Administrator’s Guide

To use the teamcd command to start a build server apart from starting the
family server (on the same machine), type the following from a prompt:

teamcd -b bldsrvr family 0

Where:

v bldsrvr is the name of a file that describes the build servers that you want to
start. Refer to the TeamConnection User’s Guide for information about
creating this file. You can also use the TC_BUILD_RSSBUILDS_FILE
environment variable to set this value.

v family is the name of the family for which you are starting the build server.

v 0 indicates that only the build server, and not the family server, is to be
started. When you want to start only a build server, you must specify 0 as
the number of daemons, otherwise TeamConnection will start one family
daemon.

Note:

For information on starting the build sever using the teamcbld
command, refer to the TeamConnection User’s Guide.

An MVS or MVS/OE build server cannot be started using the teamcd
command. Refer to the TeamConnection User’s Guide for instructions
on starting an MVS build server.

Notification server only
You can use the teamcd command to start the notification server apart from
starting the family server by typing one of the following commands from a
prompt:

notifyd family mailexit

teamcd -n mailexit family 0

Where:

v family is the name of your family.

v mailexit is the executable or command file that specifies the exit routine to
process mail requests. You can also use the TC_NOTIFY_DAEMON
environment variable to set this value.

v 0 on the teamcd command indicates that only the notification server, and not
the family server, is to be started. When you want to start only a notification
server, you must specify 0 as the number of daemons on the teamcd
command, otherwise TeamConnection will start one family daemon.

Chapter 4. Starting and stopping the servers 45

Stopping the servers

You can stop the family and notification servers from the Family Administrator GUI or
the command line.

v From the GUI:

If you started the family or notification servers from the Family Administrator GUI,
follow these steps to stop them:

1. From the Family Servers window, select the Stop push button for the appropriate
server to stop only one server. To stop both the family and notification servers,
select the Stop Both Servers push button.

2. Close the Family Servers window.

v From a command line:

1. If you started the family server from a command line, type the following at a
prompt. Substitute the name of the family you want to stop for familyName.

tcstop familyName

46 Administrator’s Guide

Chapter 5. Setting up your family structure

After you create your family, it is important that you think about the following:

v How to arrange your component structure

v How to organize your releases

v What processes you want to use

This chapter helps you determine how you want to organize your family and then
explains how to do it.

You need to understand what families, components, releases, and processes are and
what their purpose is within TeamConnection. If you have not already done so, read
“Chapter 1. An introduction to TeamConnection” on page 3, before continuing.

The following table directs you to the task you need:

For information about this task, Go to this
page.

Planning your component structure 47

Planning your releases 50

Planning your processes 53

Creating your components and releases 59

Planning your components

This section discusses how you can organize your component hierarchy to support your
configuration management needs.

Organizing the component hierarchy

You can organize your component hierarchy several ways. For example, one
component hierarchy might mirror the application development organization hierarchy,
such as department, section, team, or unit of development. Another hierarchy might
reflect the software architecture of the applications under development, such as
application, GUI, database.

When you set up your component hierarchy, consider that all defects and features are
recorded by component, and the owner of a component becomes the default owner of
the defects and features for that component. This is important because defect and
feature owners automatically receive a considerable amount of authority over the
defects and features they own. To see the actions that defect and feature owners can
perform, refer to the authority and notification table in the TeamConnection User’s
Guide.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 47

If you create your component hierarchy to store software or documentation source files,
it is best to reflect the product organization at the top level. You can then create
descendant components to reflect the development or maintenance responsibilities.
Figure 6 gives an example of this type of structure.

Your component hierarchy can consist of several parallel hierarchies so that you can
easily restrict access to certain related components. For example, if you have vendors
working on your development team, you might want to restrict their access to certain
information. You can create a parallel hierarchy that contains only the information that
they require. Figure 7 represents this type of structure.

Components can have more than one parent. A component that has more than one
parent inherits authority and notification from both. In Figure 8 on page 49, the
component optics groups both the optics_v and optics_d components for the
development project, giving the optics_v components two parents. The optics
component manages notification for the entire optics team. Access control is managed
separately for the vendors and the internal users through the lower-level components,
optics_v and optics_d.

Figure 6. A hierarchy representing product organization

Figure 7. A hierarchy showing parallel components

48 Administrator’s Guide

Your initial component hierarchy is not necessarily going to be the same as your
hierarchy a year from now. It will change as your organization grows and as your needs
change. Remember that you can change the parents of a component as well as delete
or rename the component.

When you plan your component hierarchy, you might find it helpful to first sketch it on
paper. You can then use this sketch to help you make a table in which you note
information about each component, such as the type of parts you want to control with
the component, what releases a component will manage, and which processes each
component and release will initially follow.

Determining component ownership

Each component in the hierarchy has an owner. Initially that owner is the person who
creates the component. After the component is created, the owner can, at any time,
transfer ownership to another person.

Ownership of a component is critical. A component owner has authority to perform a
wide variety of actions on that component and the parts contained in that component,
as well as on all its descendant components and their parts. For example, the owner
has authority to give other users access to the component and its parts and to delete
the component.

You might create many of the initial components for your development organization, but
you probably will not want to remain the owner of them all. As you are planning your
component hierarchy, determine whom you want to own each component. The owner of
the root component, the component at the top of the hierarchy, should be the person
with overall responsibility for the project. If several other people have responsibility for
various pieces of the development project, you might want those people to own the
descendant components that relate to their piece of the project.

The owner of a parent component has the same level of authority for all of its
descendant components.

Figure 8. Components with more than one parent

Chapter 5. Setting up your family structure 49

Figure 9 shows a portion of a component hierarchy that Sam, a family administrator,
created. Sam transferred ownership of many of the components to other members of
the team. However, he kept ownership of the root component because he has overall
responsibility for the project.

Naming the components

During the planning stage, it is helpful to decide on a component naming convention.
Do you want each component name to reflect the type of data it is managing? If so, you
need to understand the content, function, execution platform, or other characteristics of
the parts the component will manage. For example, the name for a component that
manages data for the graphical user interface of your application might begin with the
characters gui. Do you want component names to be in all lowercase characters, all
uppercase characters, or in mixed case? The database is case sensitive. Therefore,
when you are consistent with how your components are named, your users will have
less difficulty finding objects in the database. The names you use must be unique within
the family.

Other TeamConnection users will be able to create components, so you will want to
publicize your naming convention so that everyone can adhere to it. TeamConnection
users need to access TeamConnection data, and that data can be difficult to find if they
do not understand and follow your naming convention.

Determining access to components

Each component has an access list that controls access to development data. Access
authority is inherited for all descendant components, but can be explicitly restricted in
the descendant components. See “Planning for user access to TeamConnection data”
on page 70 for instructions. If you need to restrict access to several components for
most users, you might need to redesign your component hierarchy.

Planning your releases

After you decide how you are going to organize your components, determine the
releases that you will initially create.

Figure 9. A hierarchy showing component ownership

50 Administrator’s Guide

Basically, a release is a logical grouping of parts. This group of parts makes up a single
version of a product, or part of a product, that is built separately, such as
documentation or test cases. One release can group parts that are managed by many
components.

Relating releases with components

Every release is associated with a component that manages which users can access
the parts in the release and which users are notified when certain actions occur. The
only relationship between a release and the component from which it was created is to
use the Access list of that component. You can create parts in the release that belong
to another component.

For example, Figure 10 shows the component hierarchy for a development project.
Keith owns the component robot. He creates the release robot_control to contain all the
parts that pertain to the first version of the application they are developing. When Keith
created the release, he specified robot as the managing component, but he did not
specify an owner. Therefore, Keith is the release owner by default.

Keith decides that Doug should own release robot_control. As owner of the release,
Doug has authority to perform most actions against the release. However, access and
notification for the release are managed by component robot and are controlled by
Keith, the owner of robot. In this way, Keith can maintain access and notification control
of the release, even though he has delegated the management responsibilities to Doug.

If Keith wants to give Doug the ability to control the access to release robot_control, he
can add Doug’s user ID to the component’s access list and specify an authority group,
such as componentlead, that contains the authority to add users to access lists. Both
Doug and Keith would then have the authority to add entries to the access list of
component robot.

You can learn more about access lists and authority groups in “Planning for user
access to TeamConnection data” on page 70.

Figure 10. The release-component relationship

Chapter 5. Setting up your family structure 51

Selecting serial or concurrent development

The release can be set up for developing in serial development or in concurrent
development mode. In serial development, a part is locked when a user checks it out,
and no one else can update the part as long as it is checked out. In concurrent
development, more than one user can simultaneously have the same part checked out.
When TeamConnection detects that someone else has made changes to a part that
another is checking in, it notifies the user that a collision has occurred. The user can
reconcile the changes using the TeamConnection merge program.

You specify the mode in which your users will work when you create the release. Be
aware, however, that after the mode is set to concurrent, you cannot change it back to
serial. However, it is possible to change the mode from serial to concurrent.

Controlling database growth

To optimize TeamConnection performance, you can control the size of your database in
the following ways:

v Automatically by setting options when you create a release

v Manually by pruning a release

The following sections explain these methods of controlling database growth. The IBM
DB2 Universal Database Administration Guide contains more information about
managing the size and growth of your database.

Controlling database size automatically

You can help control the size of your family database by requesting the following
options when creating a release:

v Automatic pruning of work areas

v Maximum number of build output versions

These options let you reclaim database space without extra work.

Automatic pruning of work areas: To understand automatic pruning of work areas, it
helps to understand the basics of work area versioning. Every time you freeze a work
area, TeamConnection saves a revision level of the work area. When you freeze work
area 123, for example, a version called 123:2 is created. This version contains
information about each part in the work area and its current version at the time the work
area was frozen. It may contain version 1 of part optics.c, for example. If you freeze the
work area again later, a new version called 123:3 is created with information about the
versions of the parts in the work area when it was frozen. This version may contain
version 2 of part optics.c. Each of these work area versions is saved in the database
and you can retrieve the versions of the parts they contain before you integrate the
work area into the release.

52 Administrator’s Guide

Automatic pruning enables you to delete all versions of work areas after you have
integrated the most current version of the work area into a release. You can indicate
whether you want automatic pruning of work areas by doing one of the following:

v Select Automatic version pruning on the Create Releases window when you create
the release

v Use the +autopruning flag with the release command

These options tell TeamConnection to destroy work area versions when a user
integrates a work area or commits a driver to the release.

Be aware that when work areas are destroyed, most of their change tracking
information is also destroyed and it will be more difficult for you to go back to previous
versions.

Maximum committed output versions: You can also indicate the maximum number
of committed build output versions you want kept. When that number is reached,
TeamConnection discards the oldest one. Otherwise, all build outputs are saved. You
can set the maximum committed build output versions by doing one of the following:

v Specify the number you want kept in the Maximum number of output versions
field on the Create Releases window

v Use the -outputVersions flag in the release command

Controlling database size manually

If you choose not to use autopruning to control database size, you can still prune your
releases manually as follows:

1. From a Releases window, select the release you want to prune and then select
Prune from the Selected menu.

2. In the Version branch field of the Prune Release window, type the name of the first
version of the branch associated with the work area you want to prune and then
select OK.

Naming your releases

Next, decide how you are going to name the releases you create. You might want to
name your releases according to the product or object you are building. For example,
prod1r1 for release 1.1 of your application, or using1r1 for the book files for release 1.1
of your application. To make it easier on your users, continue using the basic naming
convention that you are using for your components. The names you use must be
unique within the family.

Planning your processes

Before you create your family’s components and releases, decide what processes you
are going to use during initial development.

Chapter 5. Setting up your family structure 53

A TeamConnection process is used to enforce a specific level of control of components
and releases. TeamConnection is shipped with a set of predefined processes for both
components and releases, so you provide different processes for each to follow. You
can use these processes, or you can configure your own processes using some of the
predefined subprocesses. “Chapter 8. Configuring family processes” on page 99
explains how you configure TeamConnection processes.

You probably already have a process for tracking problems as well as a process for
tracking suggested improvements to your applications. If you want to continue to use
those processes, determine how you can best group the TeamConnection
subprocesses to reflect your current process. If you do not have an existing method,
decide how tightly you want to control part changes and track defects and features.

The poster, Staying on Track with TeamConnection Processes, explains the various
states that different TeamConnection objects can go through depending on the process
that is being followed. You might want to study this information before you determine
how you want to use TeamConnection processes.

Component processes

A component’s process determines how much planning and designing is required
before work on a defect or feature begins and whether the originator is required to
verify that the work was done correctly.

When choosing a process for a component to follow, think about the type of data within
the component. For example, the parts within one component might contain complex
code that is time-consuming to fix. Before any defects or features are accepted, the
work needs to be designed and sized, so the preship process is followed. Parts within
another component contain code that is relatively easy to fix and test. The defects and
features for this component do not need to be designed and sized, so the prototype
process, which contains no subprocesses, is followed.

For components, you can require users to follow any, all, or none of the following
predefined subprocesses:

dsrDefect
Design, size and review fixes to be made for defects

verifyDefect
Verify that the fixes work

dsrFeature
Design, size, and review changes to be made for features

verifyFeature
Verify that the features have been implemented correctly

The following table lists the component processes that are supplied by IBM. Each
process combines a set of TeamConnection subprocesses. An X under the
TeamConnection subprocess indicates that the corresponding process includes it.

54 Administrator’s Guide

Table 16. Shipped component processes

Shipped TeamConnection component process

TeamConnection subprocesses

dsrDefect dsrFeature verifyDefect verifyFeature

default x x x

development x

emergency_fix

maintenance x x

preship x x x x

prototype

test x x x

Release processes

A release’s process determines to what extent part changes are tracked and the
procedure for integrating changed parts into a build. Release processes control the
day-to-day work that is involved in producing the product-fixing defects and
implementing features, as well as building the product. The type of process control you
want to enforce on a release is likely to change over time.

For releases, you can require any, all, or none of the following predefined
subprocesses:

track This subprocess is TeamConnection’s way of relating all part changes to a
specific defect or feature and a specific release. Each work area gathers all
the parts modified for the specified defect or feature in one release and
records the status of the defect or feature. The work area moves through
successive states during its life cycle. The TeamConnection actions that you
can perform against a work area depend on its current state.

You must use the track subprocess if you want to use any of the other release
subprocesses.

approval
This subprocess ensures that a designated approver agrees with the decision
to incorporate changes into a particular release and electronically signs a
record. As soon as approval is given, the changes can be made.

fix This subprocess ensures that as users check in parts associated with a work
area, an action is taken to indicate that they have completed their portion.
When everyone finishes, the owner of the fix record (usually the component
owner) can change the fix record to complete. The parts are then ready for
integration.

driver A driver is a collection of all the work areas that are to be integrated with each
other and with the unchanged parts in the release at a particular time. The
driver subprocess allows you to include these changes incrementally so that

Chapter 5. Setting up your family structure 55

their impact can be evaluated and verified before additional changes are
incorporated. Each work area that is included in a driver is called a driver
member.

test The test subprocess guarantees that testing occurs prior to verifying that the
fix is correct within the release.

Another level of control is to use release process attributes, which alter the automatic
state changes applied to a work area.

trackfixhold
With the trackfixhold attribute and the fix subprocess a work area will remain in
the fix state rather than moving to the integrate state when the final Fix
-complete command has been issued. To move the work area to integrate
state, issue a Workarea -integrate command.

trackcommithold
With the trackcommithold attribute a work area will remain in the commit state
when

v a Driver -complete command is issued for a release with a driver
subprocess.

v the final Fix -complete command is issued for a release without a driver
subprocess and with the fix subprocess.

v the WorkArea -integrate command is issued for a release without a driver
subprocess and without the fix subprocess.

To move the work area to test state, issue a Workarea -test command.

tracktesthold
With the tracktesthold attribute and the test subprocess a work area will remain
in the test state rather than move to the complete state when the final test is
marked. To move the work area to complete state, issue a Workarea -complete
command.

To add these attributes to your release process, add the following to your relproc.ld file
and then reload it.

track_test|trackfixhold
track_test|trackcommithold
track_test|tracktesthold

See “Configuring component or release processes” on page 168 for instructions on
editing and reloading relproc.ld.

The following table lists the release processes that are supplied by IBM. Each process
combines different sets of TeamConnection subprocesses. An X under the
TeamConnection subprocess indicates that the corresponding process includes it.

56 Administrator’s Guide

Table 17. Shipped release processes

Shipped TeamConnection release processes

TeamConnection subprocesses

track approval fix driver test

prototype

development x x x

test x x x x

preship x x x x x

maintenance x x x x

emergency_fix x x

track_only x

track_driver x x x

track_approval x x x x

track_test x x x x

track_full x x x x x

no_track

It is important that your users understand the meaning of each process and the type of
control it enforces. For example, if a stringent release process such as track_full is
selected, actions have to occur in a precise order. Compare this to the no_track
process where users can freely check parts in and out of TeamConnection.

How processes might change during development

TeamConnection provides different processes for components and releases. The
processes you choose depend on how tightly you want to control changes and how you
want to handle defects and features. Your choices, of course, will vary depending on
where you are in your current development cycle. You can change your processes
during a development effort to reflect different phases. For example, you might do the
following:

v During the requirements gathering phase, you create a component that manages the
requirements documentation. You want minimal defect or feature processing against
the parts managed by this component, so you select a process, such as prototype,
that is not strict. The release would also follow a relaxed process, such as prototype.

v After the requirements are settled and design work begins, you want to control
changes to the requirements data but not to the rapidly evolving design data. For the
requirements component, you change to a process that includes review and
verification, such as the default process. You also create a new component to
manage the design documentation and you select a process that is not strict. You
continue to use the prototype process for the release.

v When coding begins, you change the process for the design component to one that
includes review and verification, such as development. You also create a new
component to manage the code files. Because you will be loading files into
TeamConnection rapidly, you select a process that is not strict, such as prototype.

Chapter 5. Setting up your family structure 57

You also change to a release process, such as development, that tracks the
resolution of defects and features.

v After all the code files that are managed by a given component pass unit test, you
change that component’s process to one that includes review and verification, such
as default. You also change the release process to one with tight control, such as
track_full, so that you can carefully manage code changes.

v Ninety days before your delivery date, you change all the components to a very
stringent process, such as preship, to ensure that all new features or defects are
reviewed for impact to the delivery schedule.

Using the driver subprocess

The driver subprocess is a way to better control the building and testing of your
application code. As you develop your application program, you will probably have
many drivers within a release, and you can have multiple overlapping releases during a
development cycle.

For example, let’s say you are developing a robot application and you send monthly
updates to customers for their feedback. You do regular driver builds of your
application. You use the driver subprocess to help you control the integration of
changes that occur between builds. At some point during the month you cut off changes
to the current release r9504 for system testing. You are then ready to create a new
release called r9505. Using TeamConnection, you can link the parts in r9504 to the new
release r9505. During the follow-on development work, release r9504 is still there. At
the end of the month you send your final build and tested driver of release r9504 to
your customers.

The following figure depicts this process graphically. In this illustration, releases are
labeled ryymm, where yy represents the year (such as 95 for 1995) and mm represents
the month (such as 04 for April). Drivers are labeled dmdd, where m represents the
month (such as 4 for April) and dd represents the day of the month.

Figure 11. Using the driver subprocess

58 Administrator’s Guide

Creating components and releases

Now that you have gone through the planning phase and have your structure on paper,
you are ready to create the components and releases that your organization will use.

Creating components

For each family you create, TeamConnection creates the top component called root.
Therefore, at least the first component you create has root as the parent. Do not
change the name of the root component.

As with most TeamConnection tasks, you can use either the GUI or the command line.
To create a component, do one of the following from a client machine:

v From the GUI:

1. From the Tasks window, select Components → Create from the Actions pull-down
menu. The Create Components window appears.

2. Type the component name, the parent name, and the name of the process you
want the component to follow. Other information on this window is optional.

3. Select OK to create the component and close the window, or select Apply to
create the component and leave the window open.

v From a command line, type:

teamc component -create componentName -parent parentName
-process processName

For more information about the component command, refer to the Commands
Reference.

Figure 12. Create Components window

Chapter 5. Setting up your family structure 59

Creating releases

To create a release, do one of the following from a client machine. Before creating a
release, read “Planning your releases” on page 50.

v From the GUI:

1. From the Tasks window, select Releases → Create from the Actions pull-down
menu. The Create Releases window appears.

2. Type the release name and the name of the managing component, and select
the process you want the release to follow.

If you want your users to work on parts concurrently, check Concurrent
development mode . For serial development, leave this box unchecked. Be
aware that when you select a development mode, you cannot change it.

To reclaim database space without extra work, specify that you want automatic
pruning of work area versions that have not been integrated with the release.
Another way to save database space is to specify the maximum number of build
output versions you want kept.

Use the Coupling field to control how TeamConnection handles common parts:

Figure 13. Create Releases window

60 Administrator’s Guide

Default TeamConnection part commonality functions normally.

Loose Allows the release to exist without requiring a -force or -common
attribute on Part actions.

LooseRestr
Specifies that the release cannot be kept common with any other
release by the -common mechanism.

Refer to “Planning your releases” on page 50 for more information about these
options.

3. Select OK to create the release and close the window, or select Apply to create
the release and leave the window open.

v From a command line, type:

teamc release -create releaseName -component componentName
-process processName [-concurrent] [+autopruning]
[-outputVersions number] [-coupling default|loose|looseRestr]

For more information about the release command, refer to the Commands
Reference.

Creating a new release from an old release

A TeamConnection family contains the work of many individuals for one product or
project. Within that family, several releases can be created.

For example, currently, a team is working in the release robot_control. After this team
finishes with the current edition of the robot project, the next team might work on a
follow-on release of the robot product. That team could create a new release called
robot_v2 in which to work. Another possibility is a team that wants to implement the
robot_control program on a different type of robot (similar to developing the same
application for a different operating system). The team could create a release called
robot_mk5 in which to work. These various releases in a family are used to isolate
changes to a similar code base.

These examples illustrate that the various releases in a family will often share a code
base from another release. Administrators can link releases in order to share code
between the linked releases.

For example, to create a new release called robot_v2 that links to release robot_control,
do the following using either the GUI or command line interface:

1. Create the new release robot_v2.

2. Create a work area.

3. Link the existing robot_control release to the new release robot_v2 using the work
area that was just created.

4. Integrate the work area with the new release.

Chapter 5. Setting up your family structure 61

62 Administrator’s Guide

Chapter 6. Preparing for your users

This chapter helps you determine how to set up user authentication for the security
level in use by your family, how to identify your users to TeamConnection, and how to
set up authority groups and interest groups.

Before you start defining users, make sure you have read “Chapter 3. Creating your
TeamConnection family” on page 29 and understand how your TeamConnection
installation implements security for families.

Planning for user IDs

Each user must have a TeamConnection user ID that uniquely identifies the user to
TeamConnection and gives the user access to TeamConnection objects.
TeamConnection uses the following terms and objects to identify users and control their
access to TeamConnection information:

User ID
The ID by which TeamConnection knows you and assigns access authority to
you, and the ID under which you issue TeamConnection commands. This ID is
the one specified by the TC_BECOME environment variable or on the
Become user field of the TeamConnection settings notebook.

Login ID
This term is most meaningful in a multiuser environment, such as AIX, HP-UX,
Solaris, or Windows NT. The login ID is the ID that you use to log in to your
workstation and is specified on the User ID field of the TeamConnection
settings notebook. In single-user environments, such as OS/2 the login ID is
the one specified by the TC_USER environment variable. In Windows 95, the
login ID is used if one is specified, otherwise, the TC_USER environment
variable is used.

Other information that TeamConnection uses to authenticate users varies according to
the security level in use by your family.

Host only

If your family uses host-only security, then each user requires a valid combination of the
system login ID, TeamConnection user ID, and host name to access the family. This is
the default level of security. To set up user authentication for host only security, you
need to create a host list for each user ID. Host lists associate user IDs, login IDs, and
host names. If you are using host-list security, each TeamConnection user has a host
list that controls which user IDs, host names, and login IDs he or she can use to access
TeamConnection.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 63

If the hosts in your site use IP addresses that are assigned dynamically, then the
host-only authentication level will not work. In this case, you can use the password-only
authentication level.

To create user IDs, see “Creating user IDs” on page 66. To create host lists, see
“Planning for host lists” on page 68.

Password only

Password-only security requires a user to log in to and log off of TeamConnection and
supply a password in one of the following ways:

v Select Login from the File menu of the Tasks window.

v Issue the command teamc tclogin from a command prompt.

When the user logs in to the family, the family sends back a token associated with that
user from that client. The server checks the attached token and, if valid, proceeds to
perform the requested action.

Use password-only security if the hosts in your site use IP addresses that are assigned
dynamically.

To set up user authentication for password-only security, you need to create user IDs
for each user according to the instructions in “Creating user IDs” on page 66 and then
create a password for each user according to the instructions in “Adding and modifying
passwords” on page 67.

For information on how TeamConnection’s login manager works, see “Login managers”
on page 65.

Password or host

If your family uses password-or-host security, users can either login to the family with a
password or access the family with a valid host list entry. This level of security is useful
for teams in which particular team members may be remote or mobile and have
changing IP addresses. If the user supplies a valid password, then TeamConnection
uses the password to admit access to the family. If the user either does not supply a
password or supplies an incorrect password, then TeamConnection checks the user’s
host list entry to admit access.

For information on how TeamConnection’s login manager works, see “Login managers”
on page 65.

None

If your family does not use any level of security (if you specified None for the
security-level option), users can access TeamConnection from any client without

64 Administrator’s Guide

entering a password. Though all TeamConnection users need a user ID to access the
database, when the security level is None, TeamConnection does not require the user
ID to have a password or a host list entry.

Use this authentication level with caution and only when absolutely necessary. For
example, if the superuser forgets his or her password and the authentication level is
password only, then the superuser can stop the family, change the authentication level
to None, restart the family, modify the password, stop the family, change the
authentication level back to password only, and restart the family. Do not use this
authentication level for normal operations.

Login managers

To enable users to execute as many commands as possible without authenticating
before each command, they must log into the family server under one of the following
conditions:

v The server is running in password-only mode.

v The server is running in password-or-host mode, and the user is attempting to
access the server from a host that is not defined in a host list for that user.

When the user logs in, the server generates a token for that user, and each
TeamConnection command authenticates itself to the server by passing that token to
the server. When the user logs out, the server discards the token and will no longer
accept it. In order to ″remember″ the token across invocations of the client commands,
the client machine automatically starts a login manager to perform the login operation
and to remember the token.

When the user issues a TeamConnection command, the command requests the token
from the login manager and then forwards the token to the server. When the user logs
out of the family server, the login manager exits normally.

On single-user operating systems, only one login manager will ever be running, but on
multiuser systems, such as AIX, HP-UX, Solaris, and Windows NT, by default, one login
manager will run for each user logged into a family. Running multiple login managers
can strain resources. To avoid this situation, the superuser can start a global login
manager that will act as the login manager for every user.

The global login manager must be started by root or someone with system
administrator authority and with TeamConnection superuser authority. To start the global
login manager, execute the following command:

teamc tclogin -START_TCLOGINMGR

To stop the global login manager, execute the following command:

teamc tclogin -KILL_TCLOGINMGR

Chapter 6. Preparing for your users 65

Creating user IDs

On Intel platforms, TeamConnection provides a User Management Wizard
that you can use to add, delete, and edit user IDs. The User Management
Wizard guides you through these tasks and prompts you for the information
you need to provide to create, delete, and modify TeamConnection user IDs.

You can use a number of methods to assign IDs to your users. For instance, you can
have each user’s TeamConnection ID match the user’s login ID. This is easy to do
because each user already has a login ID. This method can be ideal if your users use
the same login ID across their different systems, but it’s confusing if they do not. For
example, if Chris Wright has access to two workstations and logs in to one as chris and
the other as wright, then identifying all the objects that belong to Chris Wright is more
complicated. If you use this method, when a user moves on to another project, you will
have to transfer the ownership of objects from that user to another user. Using this
method can make additional work for you on a project where people move around a lot.

Another method is to assign IDs according to the roles that people have, such as
proj_lead, writer1, tester_mvs, and manager. When you use this method, ownership
remains the same when people leave the project. However, it can be more difficult to
identify the person who owns a particular ID. For example, it is easier to identify Chris
Wright as the user of the ID cwright than it is to identify him as the owner of the ID
writer1.

You must have superuser or admin authority to create user IDs. To create a new user
ID in TeamConnection, do one of the following from a client machine:

v From the user interface:

1. Select Users → Create from the Actions pull-down menu on the Tasks window.
The Create User window appears.

2. Type the user’s ID and electronic mailing address. Other information on this
window is optional.

Figure 14. Create User window

66 Administrator’s Guide

If the mail address you enter in this window is unreachable from the server, you
will receive an error message.For more information, select Help from the Create
User window.

3. Select OK to exit the window, or select Apply when you want to add another
user ID immediately.

v From a command line, type:

teamc user -create -login userID -name name -address mailAddress

For more information about the user command, refer to the Commands Reference
book.

Superuser privilege is granted to one user ID when TeamConnection is installed. This
privilege is required so that at least one person has privileged access to the family to
perform special tasks, such as creating and deleting other user IDs. The person with
superuser privilege can perform all possible actions in your TeamConnection family.
This is an authority level that you definitely want to limit to only a very few individuals.
In fact, individuals who have a superuser ID should also have another ID that has less
authority, which is the ID they will use when doing their normal work. The user can
switch between the two IDs by using the TC_BECOME environment variable.

To give a user superuser privilege, include the +super flag with the user command, or
select the Superuser check box when using the GUI. When creating superuser IDs,
you might want to begin the ID with su_. This will make it obvious as to which ID has
superuser privilege. You must have superuser privilege yourself in order to give this
authority to someone else.

Note: If you are using password security, you must add a password to the user’s ID.
“Adding and modifying passwords” provides more information. If you are using
host-list security, you must add at least one host address entry to the user’s host
list to enable TeamConnection to recognize a new user. “Planning for host lists”
on page 68 provides more information.

Adding and modifying passwords

If you are using password-only or password-or-host security, you will need to modify the
user IDs you have created to add passwords to them. To add or modify a user ID’s
password, follow these steps:

v From the user interface:

1. Select Users → Modify → Password from the Actions pull-down menu on the
Tasks window. The Modify Password window appears.

2. Type the user ID in the User ID field.

3. Type the password in the Password and Verify Password fields.

Chapter 6. Preparing for your users 67

Note: The default minimum password length is 1 character. To determine if the
minimum password length for a family is something other than the default,
check the Required page of the properties notebook for the family.

4. If you are modifying an existing password, type the old password in the Old
Password field.

5. To apply the changes and leave the Modify Password window open, select the
Apply push button. To apply the changes and close the window, select the OK
push button.

v From a command line, type:

teamc user -modify -login userID -password password

For more information about the user command, refer to the Commands Reference.

Planning for host lists

When host-list security is in effect, each user ID is associated with a host list, which is a
list of client machine addresses from which the user can access TeamConnection when
using that ID. Users must have at least one entry on their host lists so that
TeamConnection will recognize them as valid users.

The following example illustrates how these terms and objects are put into use and why
TeamConnection requires both a login ID and a user ID:

A user named Chris Wright has the following TeamConnection responsibilities:

v Develops code for a product

v Performs superuser tasks for the family in which the product is developed

v Supervises builds of the product

Chris has a workstation with the TCP/IP host name cwright.company.com. This
workstation is used for Chris’s daily programming activities and for superuser activities.
For day-to-day programming work, Chris uses the TeamConnection user ID cwright
from host name cwright.company.com. For superuser activities, Chris uses the
TeamConnection user ID su_cwright from host name cwright.company.com. For build
activities, Chris has access to a workstation with the TCP/IP host name
build.company.com. Chris logs into build.company.com as cwright and extracts files
from TeamConnection as user build. To enable Chris to perform each of these activities
with the proper TeamConnection authority, Chris needs the following TeamConnection
host list entries:

Table 18. Host list entries for a sample user

Login ID Host name User ID

cwright cwright.company.com cwright

cwright cwright.company.com su_cwright

cwright build.company.com build

68 Administrator’s Guide

With these host list entries, Chris can do the following:

v Access TeamConnection as user ID cwright to perform daily programming tasks from
workstation cwright.company.com.

v Access TeamConnection as user ID su_cwright to perform superuser tasks from
workstation cwright.company.com.

v Access TeamConnection as user ID build to perform build activities from workstation
build.company.com.

A superuser or someone with admin authority must create the initial host entry for a
user. After the initial entry is created, users can add host list entries for themselves.
Additional entries in a host list lets a user access TeamConnection from other client
machines.

Creating host list entries

The initial host list entry for each user must be created by someone with superuser or
admin authority. To create a host list entry in TeamConnection, do one of the following
from a client machine:

v From the user interface:

1. Select Users → Add host from the Actions pull-down menu on the Tasks window.
The Add Host window appears.

2. Type the login ID and the name of the client machine from which the user will
access TeamConnection. The user ID is optional.

For more information, select Help from the Add Host window.

3. Select OK to exit the window or select Apply when you want to add another host
list entry immediately.

v From a command line, type:

teamc host -create login@hostName -login userID

The login value following -create is the user ID (TC_USER) with the host name
appended to it, while the -login attribute flag is the TeamConnection user’s ID

Figure 15. Add Host window

Chapter 6. Preparing for your users 69

(TC_BECOME) for the GUI (usually, these values are the same). The value of the
user’s ID is case sensitive, so type it exactly as it was typed when the user was
created.

For more information about the host command, refer to the Commands Reference.

Planning for user access to TeamConnection data

As soon as a TeamConnection user ID and a password (for password security) or host
list entry (for host-list security) are created for a user, that user automatically has the
authority to perform certain basic actions within the family. This authority is referred to
as base authority. Beyond base authority, authority to access TeamConnection data is
managed by the components that you create. Each component has an access list that
controls access to development data. Authority granted in an access list is called
explicit authority. Explicit authority is inherited by descendant components. So when a
user has authority to perform actions within one component, that authority is inherited
for all its descendant components. Explicit authority and how it is inherited is discussed
in “Granting authority to users” on page 74.

TeamConnection users also get authority to perform additional actions when they own
TeamConnection objects. Authority granted by ownership is called implicit authority.
Because this authority is inherited, you need to be careful when assigning component
ownership and when granting access authority to your users.

Figure 16 shows Doug as the owner of the optics component. As owner, Doug has the
implicit authority to perform most TeamConnection actions against the objects that are
managed by the optics component. Doug wants Greg to be able to perform many of the
same actions, so he gives him explicit releaselead authority through the component’s
access list. Because authority is inherited by descendant components, Doug and Greg
have releaselead authority in the optics_v and base_h components.

Look at your component hierarchy before granting access authority. Do you want that
user to have the authority to perform the same set of actions in all of the descendant

Figure 16. Granting authority to other users

70 Administrator’s Guide

components? If the answer is no for only one or two of the components, you can
restrict the user from inheriting authority for those components. See “Granting or
restricting access” on page 76 for instructions on restricting access to a component. If
the answer is no for many of the descendant components, you might not want to give
the user that level of authority.

What are the TeamConnection authority levels?

The authority to perform various TeamConnection actions is based on four types of
authority levels: base authority, implicit authority, explicit authority, and superuser
privilege. These types of authority are described as follows. For a summary of the
authority required for performing TeamConnection actions, refer to the TeamConnection
User’s Guide.

Base authority
All users defined to TeamConnection have authority to perform the following
actions:

v Open defects and features

v Modify the information for their user ID

v Display information about any user ID

v Add notes to existing defects and features

v Search for information within TeamConnection to create reports (some
information may be filtered out if you are not authorized to see it)

Implicit authority
Many TeamConnection objects, such as a component, part, or defect, have an
owner. The object owner automatically receives authority to perform certain
actions. For example, when a defect is opened, the owner has the authority to
accept the defect or reassign ownership of the defect. Similarly, the owner of a
component, a release, or a feature has authority related specifically to those
objects. Sometimes authority is given based on an action the user takes. For
example, when someone checks a part out of TeamConnection, that person is
given the authority to check it back in.

Explicit authority
Some users need additional authority to perform actions against objects that
they do not own. For example, users other than the component owner will
need to check parts out of TeamConnection. The component owners give
additional authority to users by adding their names to the component’s access
list.

When a user is assigned to be the owner of a component it is a good idea to
give explicit componentlead authority to that user. In that way, the user can
grant the componentlead authority to other users. Otherwise, the owner of a
component cannot grant the componentlead authority to others.

See “Granting authority to users” on page 74 for more information about
access lists.

Chapter 6. Preparing for your users 71

Superuser privilege
A user with TeamConnection superuser privilege can perform any
TeamConnection action. Only an individual with superuser privilege can add,
delete, or recreate a user ID, as well as grant superuser privilege to another
user. Only a few users in your organization should have this privilege.

See page 67 for information about granting this privilege.

What are authority groups?

There are many actions that users can perform against TeamConnection objects. It
would be tedious to grant one action at a time to each of your users. Instead, you can
grant a user the authority to perform a group of actions, called an authority group. For
example, the managers of a project might want to view only the status of certain
TeamConnection objects, while the developers need to view objects and also check in,
check out, and extract parts. You can grant access to an authority group for either of
these jobs.

The family administrator is responsible for the authority groups that your organization
uses. IBM ships a set of default authority groups with TeamConnection. Determine
whether these meet your needs or whether you need to change them. As your
organization grows and as your needs change, you will probably want to revise your
authority groups.

Creating or modifying authority groups

When the database is initially created, the authority table contains the default values for
the authority groups. If the default authority groups are not adequate for your
development organization, you can create new authority groups or modify existing
groups. Authority groups can be created or modified at any time during your
development cycle.

First, decide what group of actions the intended users are required to perform. If there
is a shipped authority group that closely matches your needs, you might want to modify
that group. Otherwise, you will need to create a new group. To help you keep track of
the authority groups that the family uses, add the name of each authority group you
create to the worksheet provided in “Appendix F. Worksheets” on page 251.

We recommend you use the Family Administrator GUI to create or modify authority
groups; however, if you prefer to do this manually, see page 165. Instructions for using
the GUI follow.

Before you do this task, we recommend that you stop the family server (see page
“Stopping the servers” on page 46 for instructions).

1. Do one of the following from a server machine to display the TeamConnection
Family Administrator window:

72 Administrator’s Guide

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a command prompt.

2. Display the family icon’s pop-up menu; then select Properties . The properties
notebook appears.

3. Select the Groups page and then select the Settings push button under Authority
to display the authority group settings.

4. Do one of the following:

v To change an existing group, highlight the group from the Authority Group list,
and then select or deselect the appropriate actions from the Actions list.

v To create a new group, follow these steps:

a. Select the New push button, type the name of the new group in New
Authority Group window, and then select the OK push button.

b. From the Actions list, select the actions you want to include in the new
group.

c. To save the new group, select the Apply push button.

v To delete a group, select it from the Authority Group list and then select the
Delete push button. When the conform delete window appears, select Yes.

v To rename a group, follow these steps:

a. Select a group from the Authority Group list.

b. Select the Rename push button.

c. Type a new name in the New name field of the Rename Authority Group
window, and then select the Apply push button.

5. When you finish making changes to your notebook pages, select OKto save your
changes and exit from the notebook.

The changes will not take effect until you start the family server.

Figure 17. Authority Group Settings window

Chapter 6. Preparing for your users 73

Granting authority to users

Each component has an access list that controls access to development data. Each
entry in an access list contains a user ID, the name of an authority group, and whether
the authority is granted or restricted for that access group. A user whose user ID
appears in the component’s access list either has authority to perform any action or is
restricted from performing any action listed in the specified authority group. A user ID
can appear in a component’s access list more than once.

There are three actions you can perform on the entries on a component’s access list:

v Add a new entry to the access list. This action grants a user a certain level of
authority to access the component.

v Add a new restricted entry to the access list. This action blocks a user from a certain
level of authority to access the component.

v Remove an entry from the access list. This action removes a user’s granted or
restricted authority to access the component. This action can have one of the
following effects:

– If the user has only one entry in the component’s access list and has no inherited
access to the component, then all access is rescinded.

– If the user has another entry in the access list or has inherited access to the
component, then that user’s access is controlled by his or her other entries in the
list.

Restricting a user from an authority group is useful when a user has inherited access
that you want to rescind. If user ID doug, for example, has releaselead access to
component optics, and if component base_h is a child of component optics, then doug
also has inherited releaselead access to component base_h. TeamConnection allows
you to restrict doug’s releaselead access to base_h, so that doug no longer has that
level of access to the component. You can also create another access list entry for
doug to grant him a lower level of access, developer, for example, to base_h. Such
actions would result in an access list as follows:

Component User ID Authority Type

base_h doug releaselead restricted

base_h doug developer granted

If you do not know what authority groups your organization uses, you can either display
the groups on the Show Authority Actions window on the GUI, or ask your family
administrator. Do the following from a client machine to display your authority groups:

1. Select Lists → Access lists → Show authority actions from the Actions pull-down
menu on the Tasks window. The Show Authority Actions window appears.

74 Administrator’s Guide

2. To see a list of the actions that are contained in a group, highlight one or more
group names, and then select OK.

Before you grant access authority to users, you should understand the following:

v Each component has only one access list.

v The authority groups in the access list must exist in the database.

v Each entry on an access list grants or restricts one user’s authority to perform the
actions in the specified authority group for the development data managed by that
component.

v The authority granted on an access list also grants the specified authority to the user
for any descendant components unless the authority has been explicitly restricted
from any of those components.

v The total authority a user has is based on the combination of the different authority
groups that are associated with the user. For example, a user that has been granted
developer+ and writer authority can perform all the actions listed in those groups.

You can create new authority groups that will build on existing groups. For example,
you might create a group called creator that contains two actions: compCreate and
releaseCreate. You could then grant certain users creator authority that would give
them this additional authority without duplicating actions that are in their other
groups.

v Only the following users can grant or restrict access authority:

– A superuser

– The component owner

– Users with accessCreate or accessRestrict authority

v You cannot grant authority greater than the authority that you have for a component.
For example, if you have releaselead authority for the component optics, you cannot
grant componentlead authority to another user. However, if you had componentlead
authority, you could grant that same authority to another user.

v A user with superuser authority can grant any authority to any user on any access
list.

Figure 18. Show Authority Actions window

Chapter 6. Preparing for your users 75

Granting or restricting access

To grant or restrict access, do one of the following from a client machine:

v From the GUI:

1. Select Lists → Access lists from the Actions pull-down menu on the Tasks
window, and then select either Add or Restrict . The Add Access or Restrict
Access window appears.

2. Type the name of the component and the IDs of the users, and then select the
authority group that you want to add them to or restrict them from.

For more information, select Help from the Add Access or Restrict Access
window.

3. Select OK to perform the action and close the window, or select Apply to
perform the action and leave the window open (for the Add Access window).

v From the command line:

– Use the access -create command to grant authority.

– Use the access -restrict command to restrict authority.

For example, to give writer authority to a user with an ID of bruce for component
robot_dev, type the following command:

teamc access -create -login bruce -authority writer -component robot_dev

For more information about the access command, refer to the Commands Reference
book.

Removing an entry from an access list

To remove an entry from an access list, do one of the following from a client machine:

v From the GUI:

Figure 19. Restrict Access window

76 Administrator’s Guide

1. Select Lists → Access lists from the Actions pull-down menu on the Tasks
window, and then select Remove . The Remove Access window appears.

2. Type the name of the component, the IDs of the users, and then select the
authority group that you want to remove from the access list.

For more information, select Help from the Remove Access window.

3. Select OK to perform the action and close the window.

v From the command line:

Use the access -delete command to remove an entry from an access list. For
example, to remove the entry that grants writer authority to a user with an ID of
bruce for component robot_dev, type the following command:

teamc access -delete -login bruce -authority writer -component robot_dev

Planning for user notification

Upon request, TeamConnection notifies users when certain actions are performed on
certain objects. Notification messages are sent to an electronic mailing address that is
specified when the user’s ID is created. (See “Setting up the mail facility” on page 42 for
more information.)

Some notification is automatic. For example, a user receives notification when someone
adds the user’s ID to an access list.

Users can receive additional notification. For example, a manager might want to be
notified whenever a defect is opened against a component. The component owner can
explicitly request that TeamConnection send the manager notification.

Each component has a notification list that controls who is notified of what actions.
Notification is inherited by descendant components. When a user is to be notified that a

Figure 20. Remove Access window

Chapter 6. Preparing for your users 77

specific action occurred within one component, that user will also be notified when that
action occurs in any of the descendant components. Unlike authority, notification cannot
be restricted for a specific component.

What are interest groups?

There are many actions that users can be notified of. It would be tedious to request one
action notification at a time for each of your users. Instead, you can request that a user
receive notification for a group of actions, called an interest group. Each interest group
is a group of actions that a certain type of user might want to be notified of.

For example, a developer might want to be notified when defects are opened or closed,
while the lead developer needs to be notified not only when defects are opened,
modified, or closed, but also when defects are sized or verified.

When planning for notification, you need to be familiar with what type of user is
automatically notified when specific actions occur. This information is listed in a table in
the TeamConnection User’s Guide. Interest groups are composed of a subset of these
TeamConnection actions.

You, the family administrator, are responsible for the interest groups that your
organization uses. IBM ships a set of default interest groups with TeamConnection.
Determine whether these meet your needs or whether you need to change them. As
your organization grows and as your needs change, you will probably want to revise
your interest groups.

Creating or modifying interest groups

When the family database is initially created, the interest table contains the default
values for the interest groups. If you find that the default interest groups are not
adequate, you can create new interest groups or modify existing groups. Interest groups
can be created or modified at any time during your development cycle.

First, decide what group of actions the intended users want to be notified of. See if
there is a shipped interest group that closely matches your needs. If there is, you might
want to modify that group. Otherwise, you will need to create a new group. To help you
keep track of the interest groups that the family uses, add the name of each interest
group you create to the worksheet provided in “Appendix F. Worksheets” on page 251.

We recommend you use the Family Administrator GUI to create or modify interest
groups; however, if you prefer to do this manually, see page 167. Instructions for using
the GUI follow.

Go to “Creating or modifying interest groups” on page 167 to complete this task.

78 Administrator’s Guide

Follow these steps to create or modify interest groups from the Family Administrator
GUI. Before you do this task, we recommend that you stop the family server (see page
“Stopping the servers” on page 46 for instructions).

1. Do one of the following from a server machine to display the TeamConnection
Family Administrator window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a command prompt.

2. Display the family icon’s pop-up menu, then select Properties . The properties
notebook appears.

3. Select the Groups page and then select the Settings push button under Interest to
display the interest group settings.

4. Do one of the following:

v To change an existing group, highlight the group from the Interest Group list,
and then select or deselect the appropriate actions from the Actions list.

v To create a new group, follow these steps:

a. Select the New push button, type the name of the new group in New Interest
Group window, and then select the OK push button.

b. From the Actions list, select the actions you want to include in the new
group.

c. To save the new group, select the Apply push button.

v To delete a group, select it from the Interest Group list and then select the
Delete push button. When the confirm delete window appears, select Yes.

v To rename a group, follow these steps:

a. Select a group from the Interest Group list.

b. Select the Rename push button.

Figure 21. Interest Group Settings window

Chapter 6. Preparing for your users 79

c. Type a new name in the New name field of the Rename Interest Group
window, and then select the Apply push button.

5. When you finish making changes to your notebook pages, select OK to save your
changes and exit from the notebook.

The changes will not take effect until you start the family server.

Working with notification lists

Each component has a notification list that controls who gets notified of what actions.
Each entry in a notification list contains a user ID and the name of an interest group. An
interest group defines the actions that each user in the group is to be notified of.

Before working with notification lists, you should understand the following:

v Each component has only one notification list.

v The interest groups listed in the notification list must exist in the database.

v The total notification a user has is based on the combination of the different interest
groups that are associated with the user. For example, a user that has been granted
med and builder notification will receive notification on actions listed only in those
groups.

You can create new interest groups that build on existing groups. For example, you
might create a group called size that contains two actions: defectSize and
featureSize. You could then add certain users to the size group for a component to
give them this additional notification without duplicating actions that are in their other
groups.

v Each entry on a notification list ensures that the user will be notified when those
actions in the specified interest group occur.

v The user receives notification when actions in the specified interest group occur in
any descendant components.

v You cannot restrict notification as you can access authority.

Displaying interest groups

Before adding users to notification lists, you need to know what interest groups your
organization uses. To see a list of groups, do the following from a client machine to
display your interest groups on the GUI:

1. Select Lists → Notification lists → Show interest actions from the Actions
pull-down menu on the Tasks window. The Show Interest Actions window appears.

80 Administrator’s Guide

2. To see a list of the actions that are contained in a group, highlight one or more
group names, and then select OK.

Adding an entry to a notification list

To add an entry to a component’s notification list, do one of the following from a client
machine:

v From the user interface:

1. Select Lists → Notification lists → Add from the Actions pull-down menu on the
Tasks window. The Add Notification window appears.

2. Type the name of the component and the IDs of the users, and then select the
interest group that you want to add them to.

For more information, select Help from the Add Notification window.

3. Select OK to exit the window or select Apply when you want to add the users to
another interest group immediately.

v From a command line, use the notify -create command. For example, to add
notification to the developer interest group in the robot_dev component for the
owners of user IDs korn and kotora, type the following:

Figure 22. Show Interest Actions window

Figure 23. Add Notification window

Chapter 6. Preparing for your users 81

teamc notify -create -login korn kotora -interest developer
-component robot_dev

For more information about the notify command, refer to the Commands Reference
book.

Removing an entry from a notification list

To remove an entry from a component’s notification list, do one of the following from a
client machine:

v From the user interface:

1. Select Lists → Notification lists → Remove from the Actions pull-down menu on
the Tasks window. The Remove Notification window appears.

2. Type the name of the component and the IDs of the users, and then select the
interest group that you want to remove them from.

For more information, select Help from the Remove Notification window.

3. Select OK to perform the action and close the window or select Apply to perform
the action and leave the window open.

v From a command line, use the notify -delete command. For example, to remove
notification from the developer interest group in the robot_dev component for the
owners of user IDs korn and kotora, type the following:

teamc notify -delete -login korn kotora -interest developer
-component robot_dev

Figure 24. Remove Notification window

82 Administrator’s Guide

Chapter 7. Working with configurable fields

Many of the attributes for defects and features are configurable. TeamConnectionallows
you to customize them so that they more closely match the needs of your development
environment. Some examples of attributes that you can customize include the following:

Defects
prefix, phaseFound, phase inject, priority, symptom, target

Features
prefix, priority, target

“Appendix B. Configurable field types” on page 181 contains complete lists of attributes
that you can customize. These are referred to as configurable fields.

You can also create and add your own configurable fields to defects, features, parts,
releases, work areas,and users. For example, you might want to add a field called
PubImpact to defects and features. Programmers can then use this field to notify the
writing team as to whether or not a defect or feature affects the accuracy of the product
documentation.

TeamConnection uses two types of objects to make configurable fields work:
configurable field types and configurable fields.

A configurable field type defines possible values for a field, the default value, and a
description of each value. Configurable field types are required only when you want to
specify a list of possible values for a configurable field or a default value. They are not
required if you want to create a configurable field for text entry. The configurable field
type, priority, for example, which is shipped with TeamConnection, is defined as follows.
This configurable field type is used to define the values for the priority field for features
and defects.

Table 19. Definition of configurable field type priority

Possible values Description

mustfix Defect or feature must be resolved in this
release

candidate Defect or feature is a candidate if time permits

deferred Defect or feature deferred to next release

easy Defect or feature is easy to solve or implement

moderate Defect or feature is moderately difficult to
resolve

difficult Defect or feature is difficult to solve or
implement

n/a Priority does not apply to this defect or feature

A configurable field defines how the configurable field type is to be used by the object
for which it is defined. A configurable field definition includes the following information:

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 83

v Whether or not the field is active

v Whether it is required or optional

v Whether you can set its value on Create or Open windows, or just modify it on
Modify Property windows

v The configurable field type that defines the possible values for the field, if a field can
have one value from multiple choices

v The attribute name to be used for the field on TeamConnection commands

v The label to be used for the field on Create, Open, and Modify Property windows

v The title to be used for the field in reports and in Features, Defects, Parts, Releases,
Users, and Work Areas windows

v Whether the owner or originator of defects, features, parts, and users can modify the
field

v Whether the field is included on Defect Accept or Feature Accept windows

v Dependent relationships between configurable fields

Features and defects use the priority field type differently, for example, and the
difference between the two is determined by how the configurable field is defined. The
following table shows how options set for priority differ for features and defects.

Table 20. Definition of priority field in features and defects

Option Features Defects

Active Yes Yes

Required No No

Allow on Create/Open No Yes

Field Type priority priority

Attribute priority priority

Field Label Priority Priority

Title Priority Priority

If you want to create a text-entry configurable field that does not require a list of
possible values or a default value, then you can create a configurable field without
specifying a configurable field type. If you do want to specify a list of possible values or
a default value, then you must specify a configurable field type when you create the
field. If you do not want to use an existing field type, you must create the type before
you create the field.

For example, if you create a PubImpact field, you might want to create a new
configurable field type called PubImpact (the configurable field type can have the same
name as the field). If you assign the attributes of yes, no, and maybe to this field, writers
can use the GUI interface or issue a TeamConnection command to see a list of all
defects or features that affect the publications. If you also add a value of done, the
writers can indicate when they have finished updating the documentation. The following
is an example of a TeamConnection command to query such a field.

teamc report -view DefectView -where "PubImpact in ('done')"

84 Administrator’s Guide

Defining configurable field types

For the defect and feature tables, TeamConnection ships configurable field types that
have defined values. You can use the default field types as is or change their attributes.
For example, TeamConnection defines a field named Severity. This field has valid
values of 1, 2, 3, and 4 (see the table on page 181). You could add an additional
value of 5, or you could change the description of what the value 2 represents.

Note: The maximum size for the value of a configurable field type is 15 characters
(single-byte or double-byte).

You can also create new configurable field types for the defect, feature, part, release,
work area,and user tables. This allows you to structure problem tracking information for
your development environment. You can create new types or change the attributes of
the existing types at any time during your development cycle. TeamConnection stores
configurable field types in a file called config.ld. “Defining configurable field types” on
page 170 describes the config.ld file.

It is recommended that you use the Family Administrator GUI to create or modify
configurable field types; however, if you prefer to do this manually, see page 170.
Always backup your database before adding or changing configurable fields or
configurable field types. Instructions for using the GUI follow.

Note: The Family Administrator GUI does not support configurable fields for TargetView
and ConfigPartView. To add configurable fields to these views, follow the
instructions in “Updating TargetView and ConfigPartView” on page 174.

Follow these steps to create or modify configurable field types from the Family
Administrator GUI. Before you do this task, stop the family server (refer to page
“Stopping the servers” on page 46 for instructions).

1. Do one of the following from a server machine to display the TeamConnection
Family Administrator window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a prompt.

2. Display the family icon’s pop-up menu; then select Properties . The properties
notebook appears.

3. Select the Configurable Fields page.

4. Under the section labeled Configurable Field Types , select the Settings push
button to open the Field Type window. The following figure shows the Field Type
window.

Chapter 7. Working with configurable fields 85

|

|
|
|

|

5. From this window, you can do the following:

v To create a new field type, follow these steps:

a. Select the New Type push button beside the Displayed list to open the New
Field Type window. Type a name for the new field type.

b. Use the Resolve by Matching radio buttons to determine the rules for
specifying values for he field type. Select one of the following:

A unique name value
Only one value can be specified for the field.

Multiple name values
One or more values can be specified for the field.

An Expression
The value specified must match specific rules (6–digit numeric value,
for example) defined for the configurable field type.

c. Use the Help Text field to enter help information for the configurable field
type.

d. When you have entered the field name, resolution option, and help text select
the OK push button.

v To change an existing field type, select it from the Displayed list and then select
the Modify Type push button. The Modify Type window opens. This window
contains the same fields as the New Type window. Once you have changed the
configurable field type, select the OK push button.

v To delete an existing field type, select it from the Displayed list, and then select
the Delete push button.

Figure 25. Field Type window

86 Administrator’s Guide

v To define values for a field type, select the field type from the Displayed list then
select the Insert New Value push button. This push button adds a new line to
the table. Complete the fields on this table as follows:

a. To set one of the values you have defined as the default, select the radio
button in the Default field.

b. Type the value in the Value field.

c. Type a description for the value in the Description field.

d. Type help text for the value in the Help Text field.

Repeat these steps for each possible value for the configurable field.
Configurable field values cannot exceed 15 characters and cannot contain
spaces. If you want to enable users to set this configurable field type to the value
null, include the value null in this list of possible values.

v To delete a value for a field type, select it from the table and then select the
Delete Value push button.

v To change the order of values in the table, select a value and then select the up
and down arrow buttons to change its order.

6. When you finish making changes in the Field Type window, select OK to save your
changes and close the window.

Defining dependent relationships between configurable field types

You can set up dependencies between configurable field types. A dependency
relationship between configurable field types enables you to use one configurable field
type to constrain the values that can be set for another configurable field type. In this
type of relationship, one configurable field type is the driver and the others are its
dependents.

One example of using dependent configurable field types is for setting values for state
and city. You can define a configurable field type called state as a driver. The range of
values that can be set for its dependent field type, city is constrained to cities that are
located in the state to which the field state has been set.

Note: You can define dependent relationships between any shipped configurable field
type except the defect configurable fields, prefix and severity and the feature
configurable field, prefix. These can be defined as driver types only.

To define a dependent relationship between two configurable field types, follow these
steps:

1. Do one of the following from a server machine to display the TeamConnection
Family Administrator window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a prompt.

Chapter 7. Working with configurable fields 87

2. Display the family icon’s pop-up menu; then select Properties . The properties
notebook appears.

3. Select the Configurable Fields page.

4. Under the section labeled Configurable Field Types , select the Settings push
button to open the Field Type window.

5. On the Field Type window, select the Set Condition push button. The following
figure shows the Set Condition window.

6. From the Driver Types field, select a configurable field type to be the driver; then, in
the list box below the Driver Types field, select the specific value of the field that will
control the values of the dependent type.

7. From the Dependent Types field, select the dependent configurable field type; then,
in the list box below the Dependent Types field, select the values that are valid for
the driver value you selected. Select the Apply button to save your changes.

8. Repeat these last two steps until you have set up all the dependent relationships
you need, then select the OK push button to save your changes.

Defining configurable fields

Default configurable fields are shipped by IBM and are installed when the
TeamConnectionserver is configured. If you do not want to use these defaults, you can
change them at any time after the family database is created.

The following conditions apply to the use of configurable fields:

v Defect, feature, part, release, work area, and user objects can have up to 20
configurable fields each.

Figure 26. Set Condition window

88 Administrator’s Guide

v Fields for defect and feature objects are effective on open, accept, and modify
actions. Fields for part, release, work area and user objects are effective on create
and modify actions.

v You can use the data from configurable fields to search the database and display
information in reports, but TeamConnection does not use the data. For example, if
you have a field called PubImpact, TeamConnection cannot change the state of a
defect based on the value of this field, but users can sort all defects and features by
whether or not they impact the publications.

v When you add fields, TeamConnection displays them on the GUI like any predefined
field. However, the help information for configurable fields for the GUI and the
commands do not reflect your new or changed fields.

v Whenever you create or modify a configurable field, your client users need to do one
of the following to make the new field appear on the GUI:

– Close the GUI and reopen it

– Use the settings notebook to change the family and then change it back

Refreshing the GUI in this way is particularly important if the new field is required.
Otherwise, your users will receive errors, but will have no way to enter information in
the required fields.

v The data type for all configurable fields is character.

Creating and modifying configurable fields

We recommend you use the Family Administrator GUI to create or modify configurable
fields; however, if you prefer to do this manually, see “Appendix A. Family administration
commands” on page 163. Instructions for using the GUI follow.

Follow these steps to create or modify configurable fields from the Family Administrator
GUI. Before you do this task, stop the family server (refer to page “Stopping the
servers” on page 46 for instructions).

1. Do one of the following from a server machine to display the TeamConnection
Family Administrator window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a prompt.

2. Display the family icon’s pop-up menu; then select Properties . The properties
notebook appears.

3. Select the Configurable Fields page.

The Configurable Fields section of this page has a list box from which you can
select the following objects: Defect, Feature, Part, Release, Work Area,and User.

4. Select one of these objects and then select the Settings push button to open the
configurable field settings for that object.

This window has three notebook pages that you can use to do the following:

Fields Define configurable fields to be used for the object.

Chapter 7. Working with configurable fields 89

Table Define the table report for the object.

Stanza Define the stanza report for the object.

5. Select the Fields page of the configurable fields window.

From this page, you can do the following:

v To create a new configurable field, follow these steps:

a. Select the New push button under the list of configurable fields to open the
New Field window.

Figure 27. Release Configurable Fields window

90 Administrator’s Guide

b. Type the new name in the Field Name entry field. The name you enter
cannot exceed 15 characters and cannot contain spaces.

c. Set options for the new configurable field by selecting or entering information
in the remaining fields in this window.

Field Type
To define a text-entry field, select (No Type) . To use a predefined
configurable field type, select one from this list. This field creates a
pointer to the entries in config.ld that define the configurable field
type you enter here. TeamConnection retrieves the possible values
for the configurable field from config.ld. See “Defining configurable
field types” on page 85 for instructions on creating a configurable
field type.

Attribute
Type the name to be used for this field on TeamConnection line
commands.

Field Label
Type the name to be used for this field on the Create, Open, Filter,
or Modify Properties window.

Title Type the name to be used for this field on the Defects, Features,
Parts, Releases, Users, or Work areas window.

The remaining fields appear on the window only if required or allowed by the
object. For releases, for example, the New Field window contains the fields,
Active, Show on Create/Open, and Required on Create/Open. For defects,
the window contains all of the fields in these fields.

Active Select this checkbox to activate the new configurable field. If this
checkbox is not selected, the field does not appear on the GUI.

Figure 28. New Field window

Chapter 7. Working with configurable fields 91

Required on Create/Open
Select this checkbox to make the new field required on Create and
Open windows. If this checkbox is not selected the field is optional.

Note: A configurable field that is required, and has a field type with
a default value set behaves like an optional field because if
no value is given, a default has already been specified.

Required on Accept
For defect or feature fields that are not required for open actions,
select this checkbox to indicate the field is mandatory for accept. If a
value is mandatory for accept and has been provided on the open
command or on a modify command before the accept, it need not be
respecified with the accept command. If a defect or feature is
opened and, prior to being accepted, a field is added or modified to
be mandatory on open, the field will be required for the accept
action.

Show on Create/Open
Select this checkbox to add the field to the Create or Open windows
for defects, features, parts, releases, work areas,or users. If this
checkbox is not selected the field appears only on the Modify
Properties windows.

Owner modifiable
Select this checkbox to enable the owner of the object to modify the
field. For parts, the owner is the component owner; for users, the
owner is the user. This field is not applicable to work areas and
releases.

Originator modifiable
Select this checkbox to enable the originator of the object to modify
the field. It is applicable to defects and features.

v To change information about a field, select it from the list and then select the
Modify push button to open the Modify Field window. This window contains the
same fields as the New Field window, described above.

Select Help for more information about using this window.

As noted earlier, the number of configurable fields that you can have is limited.

6. When you finish making changes to your notebook pages, select OK to save your
changes and exit from the notebook.

The changes do not take effect until you start the family server.

Displaying configurable field properties

To display the properties of the active configurable fields for an object, type one of the
following commands from a prompt:

v teamc defect -configInfo -family familyName [-raw]

v teamc feature -configInfo -family familyName [-raw]

92 Administrator’s Guide

v teamc part -configInfo -family familyName [-raw]

v teamc release -configInfo -family familyName [-raw]

v teamc user -configInfo -family familyName [-raw]

v teamc workarea -configInfo -family familyName [-raw]

These commands show you exactly what has been defined and let you verify that the
fields were loaded correctly.

If the -raw flag is used, the information is organized in a fixed ASCII table format as
follows:

Field Label|Title|Attribute|DB Column Name|Create|Required|Field Type|
OwnerMod|OrigMod|ShowOnAccept|ReqOnAccept|Driver

Note: The properties of both the Prefix and Severity configurable fields are displayed
for defects, whereas only the Prefix field is displayed for features.

Changing report formats

TeamConnection users can view or print reports about an object. When you create a
field, TeamConnection adds the new field to the report. You can choose the field
information that you want to present to the user and the place on the report where the
information appears.

Reports are displayed in two formats: stanza and table. The following sections describe
these formats and explain how you can change them using the Family Administrator
GUI.

Note: The Family Administrator GUI does not support modifying reports for TargetView
and ConfigPartView. To modify these reports, follow the instructions in “Updating
TargetView and ConfigPartView Reports” on page 178.

The stanza report

Figure 29 on page 94 shows an example of a stanza report. Each line in the report
represents one or more attributes of the object. To display the report from a command
prompt, type the following command. This example displays information about defect
3168.

teamc report -view DefectView -where "name='3168'" -stanza

From the GUI, select Defects → View from the Actions pull-down menu. When the View
Defect Information window appears, type the defect name.

The following is an example of a stanza report:

Chapter 7. Working with configurable fields 93

|

|
|
|

|

We recommend you use the Family Administrator GUI to change the stanza report
formats; however, if you prefer to do this manually, see page 174. Instructions for using
the GUI follow.

Follow these steps to change the position of the field, or to change or delete the format
specification from the Family Administrator GUI. Before you do this task, stop the family
server (refer to page “Stopping the servers” on page 46 for instructions).

1. Do one of the following from a server machine to display the TeamConnection
Family Administrator window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a prompt.

2. Display the family icon’s pop-up menu; then select Properties . The properties
notebook appears.

3. Select the Configurable Fields page.

4. Select the object whose report format you want to change and then select the
Settings push button.

5. Select the Stanza page of the configurable fields window.

prefix d
name 3168
reference testcase_099
abstract Compilation error occurred.
duplicate

state open priority
severity 2 target driver_020
age 9

compName demoComponent answer
release demoRelease symptom compile_failed
envName phaseFound prototyping
level level_019 phaseInject

addDate 93/04/01 11:32:47 assignDate 93/04/04 18:45:41
lastUpdate 93/04/13 11:54:15 responseDate 93/04/03 11:29:59
endDate
ownerLogin annHar originLogin martin
ownerName Ann Harrison originName Martin Karland
ownerArea Development originArea Testing

developer johnDoe

Figure 29. Sample stanza report displayed after adding configurable fields

94 Administrator’s Guide

6. Do one of the following:

v The columns labeled Report label are input fields. Type in these fields to change
the report labels.

v The columns labeled Attribute specify the values you want displayed. To change
the value for a specific field, do the following:

a. Select the field.

b. Select the drop-down button to display a list of acceptable values.

c. Select the value you want to use.

v Use the Insert push button to add blank lines into which you can insert new
fields.

v Use the Delete push button to remove a field from the report. This button
removes all fields on the selected line. If the line defines fields in columns one
and three, then both fields are deleted.

7. Use the up and down arrow buttons to change the position of a line.

8. Use the Preview push button to see how the report will look when displayed in the
TeamConnection GUI.

9. When you finish making changes to your notebook pages, select OK to save your
changes and exit from the notebook.

Note: When changing the Part stanza format, only the partView table is changed, not
the partFullView table. To manually change the partFullView table, see page 174.

Refer to Appendix A in the Commands Reference if you are not familiar with the
differences between these two views.

Figure 30. Stanza View Format Settings

Chapter 7. Working with configurable fields 95

The changes do not take effect until you start the family server.

The table report

Figure 31 is an example of a table report. Each row of the table represents a different
object, and the value of each attribute for that object is displayed in columns. The
following is an example of the command to display the report.

teamc report -view DefectView -where "name='3168'" -table

The following is an example of the table format for defects. This example shows a table
report to which a developer field has been added.

It is recommended that you use the Family Administrator GUI to change the table
formats; however, if you prefer to do this manually, see page 174. Instructions for using
the GUI follow.

Follow these steps to change the columns you want displayed, their position in the
table, or the width of the columns. Before you do this task, stop the family server (refer
to page “Stopping the servers” on page 46 for instructions).

1. Do one of the following from a server machine to display the TeamConnection
Family Administrator window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a prompt.

2. Display the family icon’s pop-up menu; then select Properties . The properties
notebook appears.

3. Select the Configurable Fields page.

4. Select the object whose report format you want to change and then select the
Settings push button.

5. Select the Table page of the configurable fields window.

pref name compName state originLo ownerLog sev age prio abstract developer
---- -------- -------------- ------- -------- -------- --- --- ---- ----------------- ---------
d 3168 demoComponent open martin annHar 2 009 Compilation error johnDoe

Figure 31. Sample table report displayed after adding configurable fields

96 Administrator’s Guide

6. Do one of the following:

v To change the position of a column, select it and then select the up or down
arrow repeatedly until the column name is in the correct position.

v To remove a column from the table, select the column label from the Displayed
list box and then select the right arrow button to move the column to the Hidden
list box.

v To add a column to the table, select the column label from the Hidden list box
and then select the left arrow button to move the column to the Displayed list
box. The label is placed at the bottom of the list; you can change its position.

v To move all columns between the Displayed and Hidden list boxes, use the
double-left and double-right arrow buttons.

v To change the width of a column, select the column label and then select the up
or down arrow in the Column width field.

7. When you finish making changes to your notebook pages, select OK to save your
changes and exit from the notebook.

Note: When changing the Part table format, only the partView table is changed, not the
partFullView table. To manually change the partFullView table, see page 174.

Refer to Appendix A in the Commands Reference if you are not familiar with the
differences between these two views.

The changes do not take effect until you start the family server.

Figure 32. Table View Format Settings

Chapter 7. Working with configurable fields 97

98 Administrator’s Guide

Chapter 8. Configuring family processes

TeamConnection is shipped with several predefined processes for both components
and releases. If these processes do not meet the needs of your development
organization, you can create your own processes. You do this by combining some of
the predefined subprocesses that IBM provides.

This chapter explains how you configure new processes or change existing processes.
If you are not familiar with TeamConnection processes and how they are used, read
“Planning your processes” on page 53.

Planning your changes

Consider the following before configuring your processes:

v To avoid confusion for end users, do not modify processes after they are in use. If
you must add or delete subprocesses in an existing process, consider instead
creating a new process.

v Do not delete a process that is being used by any component or release in your
family.

v Changes to processes do not take effect until one of the following occurs:

– A component or release is modified using the process name

– A component or release is created using the process name

The processes shipped by IBM are explained to your users in on-line help. Any
processes you configure are not explained in on-line help. Therefore, you will need to
provide this type of information to your users.

Tables are provided in “Configurable processes worksheets” on page 261 for you to
record the processes you configure.

Modifying or creating configurable processes

Your first step in configuring a process is to give the process a name. The name you
choose can be up to 15 characters in length with no blanks, tabs, or vertical separators.
To help you keep track of the processes that you configure for your family, add the
name of each process you create to the worksheet provided in “Configurable processes
worksheets” on page 261.

We recommend you use the Family Administrator GUI to modify or create configurable
processes; however, if you prefer to do this manually, see page 168. Instructions for
using the GUI follow.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 99

Follow these steps from a server machine to configure component or release processes
from the Family Administrator GUI. Before you do this task, we recommend that you
stop the family server (refer to page “Stopping the servers” on page 46 for instructions).

1. Do one of the following to display the TeamConnection Family Administrator
window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a command prompt.

2. Display the family icon’s pop-up menu, then select Properties . The properties
notebook appears.

3. Select Processes .

This page of the family properties notebook provides access to two windows: one
for defining release processes and one for defining component processes. To open
one of these windows, select one of the Settings push buttons.

Use the Release Process Settings window and the Component Process Settings
window to define processes and subprocesses for releases and components
defined in your family. Complete the fields on these windows as follows.

v To see the default subprocesses defined for each release or component process,
select a process name from the Release Process or Component Process list.
The subprocesses included will appear highlighted in the Subprocesses list.

v To add or delete subprocesses for an existing process, follow these steps:

a. Select a process from the Release Process or Component Process list.

b. To add or delete a subprocess, select it from the Subprocesses list.

c. To save your changes, select the Apply button.

v To create a new process, follow these steps:

Figure 33. Component Process Settings window

100 Administrator’s Guide

a. Select the New push button, type the name of the new process in New
Release Process or New Component Process window, and then select the
OK push button.

b. From the Subprocesses list, select the subprocesses you want to include in
the new process.

c. To save the new process, select the Apply push button.

v To delete a process, select it from the Release Process or Component Process
list and then select the Delete push button. When the confirm delete window
appears, select Yes.

v To rename a process, follow these steps:

a. Select a process from the Release Process or Component Process list.

b. Select the Rename push button.

c. Type a new name in this New name field of the Rename Release Process or
Rename Component Process window, and then select the Apply push button.

4. When you finish making changes to your notebook pages, select OK to save your
changes and exit from the notebook.

The changes do not take effect until you start the family server.

Chapter 8. Configuring family processes 101

102 Administrator’s Guide

Chapter 9. Providing user exits

TeamConnection provides a highly configurable set of processes so that you can adapt
the tool to your specific needs. However, there are many cases where you might want
to make further process adjustments or add automated steps. User exits allow you to
enhance the TeamConnection processes to perform tasks like the following:

v Ensuring that code files meet formatting requirement, such as the inclusion of
keywords that identify the name and version of the file

v Creating a new defect when a verification record is rejected on a current defect

v Analyzing a build failure and removing any work areas from a driver that include
changes to files that failed to compile (if the build fails the driver remains in restrict
state, however if it succeeds the driver can be committed)

v Ensuring that the right information is in a sizing record before it is accepted

v Automatically generating management reports when a driver is committed

This chapter describes user exits, how to use them, and how to implement them for
each TeamConnection family. User exits are not necessary for the operation of
TeamConnection; they are optional and can be configured for each family.

With user exits, you can specify additional actions that you want performed before
completing or proceeding with a specific TeamConnection command action. A user exit
enables the TeamConnection server to call a user-defined program during the
processing of TeamConnection actions. The program can be an executable file or a
command file. Thus, you can use TeamConnection as a trigger to start
non-TeamConnection processing. You can also use user exits to restrict certain
TeamConnection actions based on external considerations. For example, you might
have a user exit scan C source files to ensure that the source code conforms to the
standards defined by your development process.

The userExit file indicates the programs you want started for specific TeamConnection
actions. You can add entries to this file using the Family Administrator GUI, which is the
recommended method, or directly edit the file. This chapter explains how to set up user
exits using the Family Administrator GUI. For instructions on editing the userExit file
directly, see “Setting up user exits” on page 178.

Note: The userExit file is copied to your family database directory from a file located in
the language subdirectory of the nls\cfg directory path in the TeamConnection
installation directory, for example, teamc\nls\cfg\enu. The version of the userExit
file in this location contains comments that are not copied when the family is
created using the Family Administrator GUI.

User exits are provided for most TeamConnection actions. The actions that support user
exits are listed in “Appendix C. User exit parameters” on page 191.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 103

Writing user exit programs

User exit programs have the following behavior:

v You can call an exit at the following times:

For the user exit program to... Select this if using
the GUI

Specify this if
manually updating the
userExit file

Start at the beginning of the action, before any
initialization or access checking takes place.

Pre-check Exit ID 0

Start after all checks are made and
TeamConnection is ready to process the
command.

Pre-action Exit ID 1

Start after action is completed and all database
or library updates have been committed.

Post-action Exit ID 2

Start when a previous user exit with an exit ID
of 0 or 1 is not successful, or when the action
is not successful. This user exit program can
clean up what the other user exit programs
started.

Failure Exit ID 3

v Each user exit program receives a unique list of parameters, defined as follows:

Program (UEprogram)
Name of the calling user exit.

User-Defined Parameter (UEparameters)
The user-defined parameter in the userExit file.

Action parameters
The parameters passed to the user exit program from the TeamConnection
command. The first parameter is the name of an environment file that
contains the name and value of any action parameters specified by the
family administrator.

v When a user does not enter a value in an optional GUI field or command line, the
user exit puts "" in its place. This is also true for UEparameters.

v Positional parameters that pass true or false values, such as Break common link
(force flag), return the following:

True 1

False 0

v A nonzero return code from a user exit program for exit ID 0 or 1 terminates the
TeamConnection command. Nonzero return codes do not affect exit ID 2 or 3.

v The userExit file is read only when the family server is started. After a user exit is
enabled, you can change the exit without restarting the family server. However, you
must stop and restart the server before your changes are recognized.

Follow these guidelines when you write user exit programs:

104 Administrator’s Guide

v Not all TeamConnection commands can be used in a user exit. Some may cause a
database deadlock to occur.

v User exit programs do not permit user interaction (for example, from a user exit
program, you cannot prompt a user with a read command).

v Define only one user exit program for each TeamConnection action and exit ID
combination. If you define more than one program, TeamConnection uses the last
one you define.

v You are limited to a total of 40,000 bytes of total output from all user exits, plus
warnings, for each TeamConnection action (except teamc report and -view actions).

v Limit the length of time that the user exit program runs.

The Family Administrator GUI guides you through the configuring of user exits, and the
following examples give you a start on writing your own user exits:

v viewexit.c: A c program that displays the output of a user exit, identifying the user exit
command, the environment file, the user-defined parameter, and each of the
positional parameters. Also, parameters that are null or were truncated because they
would make the command string too long are identified. There is also a function that
was derived from teamcenv (below) to display the contents of the environment file (if
one was specified).

v teamcenv.c: A c program that lets you read the entire environment file and display
the contents of each variable stored, or extract the value of a specific variable based
on the name. It can be called from viewexit.c.

v viewexit.ksh: A version of viewexit.c written in Korn shell.

v viewexit.cmd: A version of viewexit.c written in REXX.

The table in “Appendix C. User exit parameters” on page 191 lists the parameters that
are passed by each TeamConnection action. The table also contains descriptions of
many of the parameters.

The following table provides examples of the parameters passed to a user exit program
for the PartAdd action. Each parameter has a numeric identifier. The first column shows
how to identify the parameter in source for an executable (such as C). The second
column shows how to identify the parameter in source for a shell program (such as an
OS/2 .cmd file or an AIX .ksh file). The third column describes each parameter.

Table 21. Parameters passed to a user exit for the PartAdd action

Argument
number in an

executable

Argument
number in a

shell program

Argument value

Exit ID 0

arg[0] $0 User exit program name

Chapter 9. Providing user exits 105

arg[1] $1 User defined parameter - required field containing a string
passed to a user exit program. The string must be in quotes to
ensure that all subsequent parameters are in the correct
position in the argument list.

arg[2] $2 Environment file name - null if not used

arg[3] $3 File path name

arg[4] $4 ’0’ if the file will not be transmitted; otherwise the file will be
transmitted.

arg[5] $5 Client location

arg[6] $6 Temp file on server

arg[7] $7 Release name

arg[8] $8 Component name

arg[9] $9 File type: set to ’2’ if binary is specified at file creation, to ’1’ if
text, or, otherwise, to ’0’

arg[10] $10 Work area name

arg[11] $11 FileMode

arg[12] $12 Parent name

arg[13] $13 Parser name

arg[14] $13 Builder name

arg[15] $15 Parent relation type

arg[16] $16 Builder parms

arg[17] $17 Part type

arg[18] $18 Parent type

arg[19] $19 Temporary to build

arg[20] $20 Part translation

arg[21] $21 Effective TeamConnection user ID (TC_BECOME)

arg[22] $22 Real TeamConnection user ID (TC_USER)

arg[23] $23 Verbose flag

Exit ID 1, 2

arg[0] $0 User exit program name

arg[1] $1 User defined parameter - should be in quotes

arg[2] $2 Environment file name - null if not used

arg[3] $3 File path name

arg[4] $4 Temp file on server

arg[5] $5 Release name

arg[6] $6 Component name

arg[7] $7 File type: set to ’2’ if binary is specified at file creation, to ’1’ if
text, or, otherwise, to ’0’

106 Administrator’s Guide

arg[8] $8 Work area name

arg[9] $9 Remarks

arg[10] $10 FileMode

arg[11] $11 Parent name

arg[12] $12 Parser name

arg[13] $13 Builder name

arg[14] $14 Parent relation type

arg[15] $15 Builder parms

arg[16] $16 Part type

arg[17] $17 Parent type

arg[18] $18 Temporary to build

arg[19] $19 Part translation

arg[20] $20 Effective TeamConnection user ID

arg[22] $22 Verbose flag

Exit ID 3

Same as Exit ID 0 with an additional parameter as the last parameter to indicate the last user
ExitID that has been executed successfully, for example, 0 or 1.

If you have a user exit program called viewexit, for example, that you want to execute
when a user creates a part in TeamConnection, you would include the following line in
the userExit file:

PartAdd 1 viewexit
"1991 1992" # copyright for PartAdd with '1991 1992'

This program runs when TeamConnection recognizes that the user is requesting a valid
PartAdd action, but before the PartAdd action actually starts. If the content of the
viewexit user exit program is:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>

extern int errno;

/* This is based on a limit used for actions in TeamC */
#define maxParmName 40

/*---\
| envGetFromEnvFile: |
| - Read each entry to environment file |
| - Read binary: |
| size of parameter, parameter string, size of value, value string |
| - Minimal error checking to simplify example |
| Note: This routine is condensed from the sample program teamcenv.c |
\---*/

Chapter 9. Providing user exits 107

int envGetFromEnvFile(char *envFileName)
{

FILE *envFile;

int nNameLength;
int nValueLength;
char parameterName[maxParmName+1]; /* allow for maximum in TeamC (15 + NULL) */
char parameterValue[16001]; /* allow for max in TeamC 16000 for remarks + NULL */

/* Open temporary file */
envFile = fopen(envFileName, "rb");
if (envFile == NULL)
{

fprintf(stderr,"teamcenv: Error, could not open file \"%s\"\n",
envFileName);

return 1;
}

/* Dump all attributes */
printf("\

Parameter Value\n\
======================================= ======================================\n");

fread(&nNameLength, sizeof(int), 1, envFile);
fread(parameterName, sizeof(char), nNameLength, envFile);
*(parameterName+nNameLength)='\0';
fread(&nValueLength, sizeof(int), 1, envFile);
fread(parameterValue, sizeof(char), nValueLength, envFile);
*(parameterValue+nValueLength)='\0';

while (!feof(envFile))
{

strncat(parameterName, " ",
(maxParmName - strlen(parameterName)));

*(parameterName+maxParmName) = '\0';
printf("%s %s\n", parameterName, parameterValue);
fread(&nNameLength, sizeof(int), 1, envFile);
*(parameterName+nNameLength)='\0';
fread(parameterName, sizeof(char), nNameLength, envFile);
fread(&nValueLength, sizeof(int), 1, envFile);
fread(parameterValue, sizeof(char), nValueLength, envFile);
*(parameterValue+nValueLength)='\0';

}

fclose(envFile);
return 0;

}

/*---\
| main: |
| - Print standard set of arguments at beginning of parameter list: |
| UEprogram, UEparameter and EnvFile |
| - Print rest of arguments; the positional parameters |
| - If EnvFile is not NULL, print the contents of the EnvFile |

108 Administrator’s Guide

\---*/
int main(int argc, char *argv[])
{

int i,n;

/* Compute the number of action parameters passed at definition */
int totalParms = argc - 3;

/* Display the name of the command. */
/* It is not necessary to parse name. */
printf("UEProgram: %s\n", argv[0]);

/* Display parameter list. */
if (strlen(argv[1]) != 0)

printf("UEParameters string: %s\n", argv[1]);
else

printf("UEParameters string is NULL\n");

/* Display parameter env file. */
if (strlen(argv[2]) != 0)

printf("EnvFile name: %s\n", argv[2]);
else

printf("No environment file; string is NULL\n");

/* Display parameter list. */
for (i = 3; i < argc; i++)
{

n = strlen(argv[i]);
if (n == 0)

printf("Action Parameter [%d] is NULL\n", i-2);
else
{

printf("Action Parameter [%d]: %s\n", i-2, argv[i]);

/* Ellipses in data, checking for end (i.e. truncation) */
/* - Each parameter limited to 400 bytes in OS/2, Windows */
/* and Windows NT, and 16000 bytes in Unix */
/* - Total command string limited to 1024 bytes in OS/2, */
/* Windows and Windows NT, and 32000 bytes in Unix */
/* - compute address of last 3 characters then compare */
if (strcmp(((argv[i])+n-3), "...") == 0)
{

printf(" parameter %d string was \
truncated!\n", (i-1));

/* If last parameter truncated, then entire list truncated */
if (i == (argc - 1))

printf("Parameter list was truncated!\n");
}

}
}
printf("Total action parameters: %d\n", totalParms);

/* Print contents of parameter env file. */
if (strlen(argv[2]) != 0)

Chapter 9. Providing user exits 109

{
printf("Printing contents of Environment File\n");
envGetFromEnvFile(argv[2]);

}

return (0);
}

and the command issued by the TeamConnection client is:

teamc part -create src\partX.c -component codeAcomp -release ToolAvRel
-family testfam -workarea waABC -parent partX.obj -input -parser Cparser

the output displayed in the client window is:

UEProgram: C:\TESTFAM\BIN\viewexit.cmd
UEParameters string: 1991 1992

No environment file; string is NULL
Action Parameter {1}: src/partX.c
Action Parameter {2}: C:\TESTFAM\BIN\TCTMP\D373\RQOESU7J.C2T
Action Parameter {3}: ToolAvRel
Action Parameter {4}: codeAcomp
Action Parameter {5}: 1
Action Parameter {6}: waABC
Action Parameter {7}: Initial Version of src/partX.c
Action Parameter {8}: 0600
Action Parameter {9}: partX.obj
Action Parameter {10}: Cparser
Action Parameter {11} is NULL
Action Parameter {12}: 1
Action Parameter {13} is NULL
Action Parameter {14}: TCPart
Action Parameter {15}: TCPart
Action Parameter {16}: no
Action Parameter {17}: no
Action Parameter {18}: cmvctest
Action Parameter {19}: 1
Total action parameters:19

In the preceding example, no remark was specified so TeamConnection provided
Initial Version of src/partX.c.

Environment file

The list of positional parameters in a user exit command string can get very long.
Further, it is sometimes difficult to parse through such a command. For example, in
OS/2, a carriage return in a parameter prematurely ends the command string.
Therefore, it is not always certain that the command string will include the parameters
after a remarks parameter.

110 Administrator’s Guide

The solution to this problem is to select the variables that you will need and have their
values inserted into an environment file. The environment file is a binary file that
contains the names of parameters and their values, including carriage returns and
anything else that has been passed along. If the use of an environment file is specified,
the name of the temporary file containing the environment variable names and values is
the positional parameter after the user-defined parameter.

The viewexit.c and teamcenv.c files in the samples directory show how to read the
environment file.

“Appendix C. User exit parameters” on page 191, containing the names of all of the
parameters, is also the list of names used for the environment file.

The tcadmin tool guides you through selecting parameters to be passed in the
environment file.

Setting up user exits

When you want TeamConnection to start a user exit, you must associate the user exit
program with TeamConnection actions. We recommend you use the Family
Administrator GUI to associate the actions with the program; however, if you prefer to
do this manually, see 178. Instructions for using the GUI follow.

Follow these steps to associate user exit programs with TeamConnection actions.
Before you do this task, we recommend that you stop the family server (refer to page
“Stopping the servers” on page 46 for instructions).

1. Do one of the following to display the TeamConnection Family Administrator
window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a command prompt.

2. Display the family icon’s pop-up menu; then select Properties . The properties
notebook appears.

3. Select the User Exits page and then select the Settings push button to open the
User Exit Settings window.

Chapter 9. Providing user exits 111

4. Highlight the action that you want to associate the user exit with, then select the
push button at the bottom of the settings window to specify when you want the user
exit to start.

Pre-check (Exit ID 0)
before Action checking

Pre-action (Exit ID 1)
before Actions processing

Post-action (Exit ID 2)
after Action completes

Failure (Exit ID 3)
if action or programs fail

Selecting one of these push buttons opens a window that you can use to specify
the program and parameters to use for the user exit. The following is an example of
the Pre-Check window.

Figure 34. User Exit Settings

112 Administrator’s Guide

5. Type the name of the user exit program to be executed as well as any user-defined
parameters and comments (see “Configuring user exit parameters” for more
information on specifying parameters). Select the OK push button to save the
information for each user exit you specify.

6. Repeat these steps for each user exit program that you want to start.

7. When you finish making changes to your notebook pages, select OK to save your
changes and close the notebook.

Select Help for more information about using the User Exit Settings window.

The changes do not take effect until you start the family server.

Configuring user exit parameters

You can configure the parameters to be passed to a user exit program for each user
exit ID (0, 1, 2, or 3) as follows:

v Reorder the parameters

v Select which of the available parameters for an action are to be passed to the user
exit and which are to be omitted

v Include configurable fields in the list of parameters to be passed to the user exit

v Include new fields that were previously not available

If you choose to configure the parameter list for a user exit ID, TeamConnection creates
a new field in the userExit file that identifies the parameter list. Normally, a user exit
definition in the userExit file appears as follows:

PartAdd 0 viewexit "1991 1992"

Figure 35. Pre-Check window

Chapter 9. Providing user exits 113

TeamConnection uses an ENV=() field to define a customized parameter list. If you
want your user exit to be passed only the component and release parameters of the
PartAdd action, for example, TeamConnection defines the user exit as follows:

PartAdd 0 viewexit "1991 1992" ENV=(component,release)

Any of the customizations listed at the beginning of this section will cause an ENV=()
field to be generated for the user exit definition. The values for the customized
parameters are stored in a temporary file so that they can be extracted into the user
exit program.

To configure a parameter list for a user exit, follow these steps:

1. From the User Exits page of the Family Administrator properties notebook, set up
the user exit program for the action and the exit ID as described in “Setting up user
exits” on page 111.

2. Using the notebook tabs at the bottom of the User Exits page, select the tab
corresponding to the user exit ID for which you defined the user exit:

Exit ID 0
Pre-Check

Exit ID 1
Pre-Action

Exit ID 2
Post-Action

Exit ID 3
Failure

To configure a parameter list for the user exit associated with the Pre-Check exit ID
of the PartAdd action, for example, select PartAdd from the list of actions on the
User Exit Settings window, then select the Open Pre-check button at the bottom of
the page.

The following is an example of the Pre-Check window for the PartAdd action.

114 Administrator’s Guide

3. Set options for the Pre-Check exit ID for PartAdd as follows:

Program
Type the full path name of the user exit program.

User-Defined Parameter
Type any parameters that you want to pass to the user exit program for the
action and exit ID.

Comment
Type a comment to be included in the userExit file with the user exit
definition.

Environment Variable File
Select the parameters you want to use from the list. If any configurable
fields have been defined, they appear at the bottom of this list. The values
for these parameters will be stored in a temporary file for extracting into the
user exit program.

4. Select the OK push button to save the options you have set.

The options that you set on this page are added to the userExit file. They take
effect after you stop and restart the family server.

Sample user exit programs

TeamConnection is shipped with the following sample user exit programs:

samples/teamcenv.c
Extracts the value of customized parameters from the temporary environment
file so that they can be passed to a user exit program. You can incorporate this
code into any user exit programs written in C.

samples/viewexit.c, samples/viewexit.ksh, and samples/viewexit.cmd.
Each of these samples shows the following information:

Figure 36. Pre-Check window for PartAdd

Chapter 9. Providing user exits 115

v Parameter 0: Executable name

v Parameter 1: User defined parameters

v Parameter 2: Environment variable file name (generated by
TeamConnection and deleted automatically after the daemons are brought
down)

Each sample also can output the contents of the environment variable file
(viewexit.c has a simple function to dump the contents, while viewexit.cmd and
viewexit.ksh have commented out lines that can call teamcenv).

The list of available user exits and their parameters can be viewed by a super user
issuing the following command:

teamc report -userExitInfo

Adding the -long flag will also display the user exits currently configured and the
environment variables to be written to the environment file.

116 Administrator’s Guide

Chapter 10. TeamConnection shadows

A shadow is a collection of parts in a file system that reflects the contents of a work
area, driver, or release. The shadow could be a simple directory structure on a network
server, or a file system on a completely different computer platform. You can use
shadows to build your product, or they can simply be a place where developers can go
to search through code. Shadowing is similar to extracting in that the purpose of each is
to provide a set of files that reflect the version of a TeamConnection object.

TeamConnection does not do shadowing all by itself. It implements a framework that
requires you to provide the ″shadowing program″ to perform the actual file system
updates. This shadowing program can be one you create yourself, or a sample that is
shipped with TeamConnection. When commands are issued that change the contents or
properties of a part, TeamConnection determines what needs to be updated in the
shadows. TeamConnection then extracts the parts and calls the ″shadowing program″
to update the file system.

TeamConnection stores information about the shadowed parts in the TeamConnection
database. Subsequent shadowing actions ″remember″ what is already in the shadow to
avoid doing unnecessary updates. For example, assume a driver exists with many
driver members. When a new work area is added to the driver, only those files that
have been changed on the new work area are extracted and placed in the shadow.

This chapter describes shadows and how to implement them for your families. Shadow
properties and shadow actions are described. The requirements and interfaces that
shadowing programs must implement are also defined.

Note: Shadows are not necessary for the operation of TeamConnection; they are
optional and can be configured for each family.

Shadow types

A shadow type is an association between a name you define and a shadowing
program. A shadow type has the following properties:

name The name you choose for the type. The name must be unique within the
family.

description
The description of the shadow type.

program name
The program that TeamConnection will call to perform the shadowing actions.
This name should be a fully qualified path to the program. The
TeamConnection server must be able to access and run this program. This
program can be a sample shipped with TeamConnection, or one that you write
yourself.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 117

Shadow properties

Shadows have the following properties.

name The name of the shadow. The name must be unique within the release.

type A type that has been defined for the family.

release
The release for the shadow.

mode The mode of the shadow. The mode can have two possible values:

v manual - Shadows are updated only when explicitly requested by
authorized users with the shadow -synchronize command.

v synchronous - Shadows are updated as the contents of work areas,
drivers, and releases are changed.

state A shadow has two possible states:

v disabled - The shadow is not able to perform shadowing actions. A shadow
can be disabled if, for example, the file system has run out of space. After
the problem with the shadow has been corrected, the shadow can be
enabled.

v enabled - The shadow is able to perform shadowing actions.

location

The location of the shadow. This is text that defines where each part should be
placed in the shadow. The location text supports the following substitution
variables.

Note: On UNIX platforms, to bypass the UNIX shell, use the escape character
\ with the $ macros.

v $N - the name of the work area, driver, or release that is being shadowed.

v $P - the path name of the part being shadowed.

v $B - the base name of the part being shadowed.

v $F - the family name.

v $R - the release name of the part being shadowed.

v $C - the component name of the part being shadowed.

v $S - the name of the shadow.

v $V - the version SID of the part being shadowed.

v $$ - used to define the literal ″$″.

This property can contain any text. This information is passed to the
shadowing program after the values for any variables are substituted. The
contents of this property are defined, validated, and implemented by the
shadowing program.

118 Administrator’s Guide

For example, the location could be specified as some directory that the
TeamConnection family server can access, such as:

/home/tcparts/$R/$N/$P

or it could be a combination of machine name, port, and directory:

hostname.ibm.com 1300 /home/tcparts/$R/$N/$P

The location property should be defined so that parts from work area, driver,
and release versions do not resolve to the same location. For example, if the
location was specified as /tcparts/$R/$P, the same part in two different work
areas would resolve to the same location. You should always include the name
of the object ($N) and the path ($P) in the location to avoid this situation.

drivers Indicates whether the specified shadow contains drivers. Valid values are yes
and no .

work areas
Indicates whether the specified shadow contains work areas. Valid values are
yes and no .

release
Indicates whether the specified shadow contains release versions. Valid values
are yes and no .

crlf Indicates whether a crlf (carriage return / line feed) conversion should be
performed. Valid values are yes and no . When this value is yes, both a ″cr″
and a ″lf″ character are used to indicate the end of a line in a file. Generally, a
crlf value of yes means that the shadow is primarily used by Intel-based
clients, and a value of no indicates AIX/UNIX users. This property only applies
to text parts.

keys Indicates whether TeamConnection keywords embedded in parts will be
expanded. Valid values are yes and no . This property only applies to text
parts.

timestamp
Indicates which timestamp should be used on files extracted from
TeamConnection. This property can have the following values:

v preserve - The timestamp of the part will be set to the timestamp
maintained by TeamConnection as set when the part was checked in. This
is the same timestamp that you would see if you extracted the part.

v current - The timestamp of the part will be the current time. That is, the
time when the part is shadowed.

priority
A positive integer number that indicates the shadow’s priority within the
release. Shadows are processed from the highest priority shadow to the
lowest. This property applies only to synchronous shadows. For manual
shadows, this is set to zero (0).

Chapter 10. TeamConnection shadows 119

parameters
Additional parameters to pass to the shadowing program. These are
parameters that the shadowing program defines and knows how to implement.
The format is any text. This property supports the same substitution variables
that are supported by the location property. For example:

-component $C -version $V -language English

Shadow actions

The following actions can be performed with the TeamConnection shadow command.

v define - Define a shadow type.

v redefine - Update the properties of an existing shadow type.

v undefine - Delete a shadow type.

v create - Create a shadow of a specific type for a release.

v modify - Modify the properties of a shadow.

v disable - Disable a shadow. This will temporarily turn a shadow off.

v enable - Enable a previously disabled shadow.

v delete - Delete a shadow. This action only affects the shadowing information in the
TeamConnection database. It does not delete the files in the shadow.

v view - View the shadow properties.

v synchronize - Synchronize a shadow to the state of the TeamConnection database.
A shadow is out of sync with TeamConnection when the contents of the parts in the
shadow are not the same as the contents of the parts in TeamConnection. The
shadow could be out of sync if a prior attempt at shadowing failed. Synchronizing the
shadow will attempt to update the shadow to reflect the current state of the
TeamConnection objects (release, drivers, work areas). The synchronize action has a
report option that will only report the parts that are out of sync.

v verify - Verifying a shadow will synchronize a shadow. Additionally, TeamConnection
will verify that the timestamps of the parts in the shadow match the timestamps that
TeamConnection stored when the parts were placed in the shadow. This action is
typically required when your shadow has been damaged from unexpected problems.
For example, in the case of a disk crash, the shadow could be restored from backup.
Then the verify action could be used to update any parts that have changed since
the backup.

See the Command Reference for more details on each of these actions.

When does shadowing happen

For manual mode shadows, shadowing occurs only when the shadows are explicitly
synchronized with the shadow -synchronize command. This action will update the
shadows to reflect the current state of the TeamConnection release, driver, or work area
that you are synchronizing.

120 Administrator’s Guide

For synchronous mode shadows, shadowing occurs as the contents of releases,
drivers, and work areas change. The following actions will trigger shadowing for each of
the objects.

v Releases

Driver -commit

Workarea -integrate (if the driver subprocess is not included in the release
process.)

v Drivers

DriverMember -create/-delete

v WorkAreas

Workarea -refresh/-undo/-cancel

Part -checkin/-create/-rename/-undo/-build/-delete/-link/-modify/-recreate/-refresh/-
rename

The Driver -commit and WorkArea -integrate commands will trigger shadowing for all of
the parts on the specified driver or work area. The DriverMember commands will trigger
shadowing for all of the parts on the specified driver that are not current. The work area
-refresh, -undo, and -cancel commands will trigger shadowing for all of the parts on the
specified work area that are not current. A part command will only trigger shadowing for
the specified parts in the specified work areas.

Writing shadowing programs

When TeamConnection determines that a shadow needs to be updated, it will call a
shadowing program to perform the actual updates to the file system. The shadowing
program is called once for each file in the shadow that needs to be updated. For
example, on a Part -create action, the shadowing program will be called once for the
part. For a DriverMember -create action, the shadowing program will be called once for
each part in the work area that was added to the driver.

Shadowing program interface

The shadowing program must implement the following interface to copy, delete, and
verify parts in the shadow:

-chmod -family Name -release Name -shadow Name -path Name -location Text
-fmode Name -parameters Text

-copy -family Name -release Name -shadow Name -path Name
-location Text -type [text | binary] -fmode Name
-sourcefile Name -parameters Text

-delete -family Name -release Name -shadow Name -path Name
-location Text -parameters Text

-verify -family Name -release Name -shadow Name -path Name
-location Text -timestamp Timestamp -parameters Text

Chapter 10. TeamConnection shadows 121

Attributes:

Attribute Description
-family Name The family for which this program is being called.
-release Name The release for which this program is being called.
-shadow Name The name of the shadow.
-path Name The full pathname of the part being shadowed.
-location Text The location as defined for the shadow with all variables replaced

by their actual value.
-type [text | binary] The type of the file.
-fmode Name The filemode of the file.
-timestamp TimeStamp The timestamp of the file in the form YYYY/MM/DD HH:MM:SS
-sourcefile Name The full pathname of a file that contains the contents of the part.

This is a temporary copy of the part that TeamConnection extracts.
After the shadowing has finished, this file will be removed.

-parameters Text The parameters defined for the shadow with all variables replaced
by their actual value. This is always passed as the last parameter to
the program.

Your shadowing program must also implement a validate function. Every time a shadow
is created or modified, this function is called with the properties of the shadow. When a
shadow is created, the shadow properties are determined by overriding the default
property values with those explicitly specified on the command. When a shadow
definition is modified, the shadow properties are determined by overriding the current
property values with those specified on the command. The syntax for the validate action
is:

-validate -shadow Name -type Name -release Name -location Text
-contents [drivers] [work areas] [release]
-mode { synchronous | manual } -crlf { yes | no }
-keys { yes | no } -timestamp { preserve | current }
-priority Number -parameters Parameters

The shadowing program should validate the values specified. In particular, the -location
and -parameters value should be checked to see if they have been specified properly
(since these parameters are implemented by the shadowing program, TeamConnection
does not perform any validation on them). If the parameters are valid, this function
should return a zero, and TeamConnection will store the updates. If the parameters are
not valid, display an error message and return a nonzero return code. The updates will
not be stored.

Shadowing program requirements

This section defines the minimal requirements that each of the shadowing actions
should implement. Your shadowing program may perform more than what is required
here. It all depends on the needs and characteristics of your installation. Since
shadowing programs will be run frequently on the TeamConnection family server, you
should keep performance in mind when writing shadowing programs. Try to keep the
time required to perform shadowing as short as possible. Use compiled programs rather
than interpretive languages (command files, shells, or scripts).

122 Administrator’s Guide

The -chmod function of the program should modify the file mode of location to the
fmode value. Note that when you create your shadowing program, you should only
change the mode when you are shadowing to file systems that support file modes (AIX,
HP-UX, and Solaris). If the function is successful, return zero, otherwise return a
nonzero return code.

The -copy function of the program should copy the contents of the sourcefile to the
location. The timestamp of the part in the shadow must be the same as the timestamp
on the sourcefile. This enables the shadow to be verified at a later time. If the function
is successful, return zero, otherwise return a nonzero return code.

The -delete function should delete the part from the location. If the function is
successful, return zero, otherwise return a nonzero return code.

The -verify function should validate that the timestamp of the file in the location is the
same as the timestamp parameter. If the timestamp is the same, a return code of zero
should be returned. If the timestamp is not the same and you want the timestamp to be
refreshed, return a one. For other errors, return any other nonzero return code.

Note: For the -chmod , -copy , and -delete functions, a shadowing failure does not
cause the TeamConnection command to fail. For example, if on a part -checkin ,
the shadowing fails, the part is still checked in to TeamConnection and unlocked
from your user ID. This results in the shadow being out of sync with
TeamConnection. The shadow can be synchronized after the problem with the
shadow has been corrected.

Shadowing program output

Any error messages that are displayed from within the shadowing program are returned
to the user as part of the command output. TeamConnection will display a warning
message stating that the command was successful, but shadowing errors occurred.

Sample shadowing program

A sample shadowing program named TCshadow.c is shipped with TeamConnection. It
implements a simple shadow on a file system that the TeamConnection server can
access directly. Included in the sample are routines for parsing and validating the
parameters passed to the shadow program. You can compile this and use it as is, or
use it as the basis for creating your own shadow programs.

Chapter 10. TeamConnection shadows 123

124 Administrator’s Guide

Part 3. Maintaining the TeamConnection server

This section contains information on maintaining your TeamConnection database,
monitoring family use, and migrating your database to TeamConnection version 3.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 125

126 Administrator’s Guide

Chapter 11. Maintaining your TeamConnection environment

This chapter tells you how to use several TeamConnection tools for the following:

v Changing the age of defects and features

v Taking care of returned mail

v Resolving TeamConnection errors

v Backing up the TeamConnection database

As the family or database administrator for a TeamConnection family, you will also need
to perform maintenance and tuning operations on the DB2 database that stores your
TeamConnection family. For information on administering a DB2 database, refer to the
following DB2 Universal Database administration manuals:

v Administration Getting Started (S10J-8154–00)

An introductory guide to basic administration tasks and the DB2 administration tools.

v SQL Getting Started (S10J-8156–00)

Discusses basic concepts of DB2 SQL.

v Administration Guide (S10J-8157–00)

A complete guide to administration tasks and the DB2 administration tools.

v SQL Reference (S10J-8165–00)

A reference to DB2 SQL for programmers and database administrators.

v Troubleshooting Guide (S10J-8169–00)

A guide to identifying and solving problems with DB2 servers and clients and to using
the DB2 diagnostic tools.

v Messages Reference (S10J-8168–00)

Provides detailed information about DB2 messages.

v Command Reference (S10J-8166–00)

Provides information about DB2 system commands and the command line processor.

v Replication Guide (S10J-0999–00)

Describes how to plan, configure, administer, and operate IBM replication tools
available with DB2.

v System Monitor Guide and Reference (S10J-8164–00)

Describes how to monitor DB2 database activity and analyze system performance.

v Glossary

A comprehensive glossary of DB2 terms.

More information on administering a TeamConnection DB2 family database may be
available in technical reports on the IBM VisualAge TeamConnection Enterprise Server
Library home page. To access this home page, select Library from the IBM VisualAge
TeamConnection home page at URL http://www.software.ibm.com/ad/teamcon.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 127

Changing the age of defects and features

TeamConnection provides two aging utilities: age and resetAge. Use these utilities to
update the age value of defects and features while work is in progress. If you do not
use these utilities, the age value for each defect and feature remains at zero.

Before you use the age utilities, make sure you have set the TC_DBPATH and
TC_FAMILY environment variables in your config.sys file as follows:

v Set TC_DBPATH to the directory where the family database is. Make sure that you
do not include a semicolon (;) or backslash (\) at the end of this path.

v Set TC_FAMILY to the family name.

The following is an example for a family database named testfam:

SET TC_DBPATH=c:\teamc\testfam
SET TC_FAMILY=testfam

With these environment variables, the age utilities will change the defect and feature
ages of the TeamConnection family database testfam in the directory c:\teamc\testfam.

The age utility

Use the age utility to increment the age value by 1 for each defect or feature that is in a
specified state.

The age utility is shipped in one of the following files:

UNIX platforms
age

OS/2 age.cmd

Windows
age.bat

The file is located in bin subdirectory of the directory where the TeamConnectionserver
is installed. Initially, the file is set up to update the age of defects that are in one of the
following states:

v open

v working

v design

v size

v review

You can edit the file to delete one or more of these states or to add any of the following
states:

v canceled

128 Administrator’s Guide

v returned

v closed

v verify

Run the age utility from a server machine using the following command:

age

The resetAge utility

Use the resetAge utility to reset the age of defects and features based on their state
(open, working, design, size, and review), the date they were opened, and the selected
aging increment.

Run the resetAge utility from a server machine using the following command.

resetage ageIncr

Where ageIncr is one of the following:

fullweek
Ages the defects and features according to a 7-day schedule.

workweek
Ages the defects and features according to a 5-day work week schedule.

Resolving TeamConnection errors

The TeamConnection error log and audit log can help you resolve TeamConnection
error messages. This section explains how to use these two logs and briefly explains
the trace facility.

Using the system error log (syslog.log)

Severe errors that are encountered by the family server are recorded in the syslog.log
file. Use this file to help you better understand and resolve the error. This log usually
provides more information than what is found in the initial message. There is only one
syslog.log file, so if you have multiple families, error information for each family is
recorded in the same file.

Because the syslog facility is not a native application for OS/2 and Windows NT,
TeamConnection provides an application specific syslog. The syslog file resides in the
same location where the TeamConnection Family Server (teamcd.exe) resides, and it is
called syslog.log.

Refer to the Installation Guide for instructions on activating the syslog (on UNIX
platforms).

Chapter 11. Maintaining your TeamConnection environment 129

Using the audit log (audit.log)

For each family, TeamConnection provides an audit log that contains an entry for every
action performed since the family was created. The audit.log file is located in the
directory where your family database is installed (your TC_DBPATH).

The audit log file contains information about both successful and unsuccessful
transactions, making it useful for determining the source of a problem. It also includes
an entry whenever an unauthorized attempt is made to access the TeamConnection
server. This can help you audit your system’s security.

The following information is recorded in the audit log for each transaction:

v For authorized transactions:

– Process ID number of the family server

– TeamConnection action

– Whether the transaction was successful or not

– Date of the transaction

– Time the transaction started

– Time the transaction ended

– For failure transactions, status phase information showing the C++ method being
executed by the TeamConnection action name

– User ID of the person who requested the action

– The name of the host system from which the user is accessing TeamConnection

– Additional information for successful transactions, or error messages for
unsuccessful transactions. See page 131 for the additional information about each
TeamConnection action.

v For unauthorized transactions:

– Process ID number of the family server

– User ID of the person who requested the action

– The name of the host system from which the user is accessing TeamConnection

– Notification that the request was unauthorized

– Date and time of the transaction request

– For failure transactions, status phase information showing the C++ method being
executed by the TeamConnection action name

– Error message

The following is an example of information as it appears in the audit.log file.

130 Administrator’s Guide

The following table lists the additional information that is provided for each
TeamConnection action.

TeamConnectionAction Additional information

AccessCreate TeamConnection user ID, component name, authority group name

AccessDelete TeamConnection user ID, component name

AccessRestrict TeamConnection user ID, component name, authority group name

ApprovalAbstain Release name, defect or feature name, approver’s name

ApprovalAccept Release name, defect or feature name, approver’s name

ApprovalAssign Release name, defect or feature name, new approver’s name

ApprovalCreate Defect or feature name, release name, approver’s name

ApprovalDelete Defect or feature name, release name, approver’s name

ApprovalReject Release name, defect or feature name, approver’s name

ApproverCreate TeamConnection user ID, release name

ApproverDelete TeamConnection user ID, release name

CompCreate New component name

CompDelete Component name

CompLink Component name, new parent component name

CompModify Component name

CompRecreate Component name

CompUnlink Component name, parent component name

CompView Component name

31436,ReleaseCreate,SUCCESS,1998/03/17,11:32:50,11:33:00,tcserv,tcserv,
alexm.ral.ibm.com,robot_v2

31449,PartLink,SUCCESS,1998/03/17,11:33:41,11:33:42,tcserv,tcserv,
alexm.ral.ibm.com,FILEH1.bin,relH1,robot_v2,1.2

31249,PartCheckOut,SUCCESS,1998/03/17,11:35:08,11:35:08,tcserv,tcserv,
alexm.ral.ibm.com,FILEH1.bin,robot_v2,1.3

31259,PartCheckIn,SUCCESS,1998/03/17,11:35:18,11:35:18,tcserv,tcserv,5
alexm.ral.ibm.com,FILEH1.bin,relI1,1.4

24942,Transaction from joe/tcserv@tcserv.ral.ibm.com was UNAUTHORIZED,03/18/95,09:43:11,
0010-100 User joe was not found.

68256,PartExtract,FAILURE,1998/02/06,10:35:45,10:35:46,beville,beville,ausaix18.austin.ibm.com,
statusphase = getListByBaseName
6021-140 There is no committed version of part junk.c visible to release r2.

To view the part, specify a work area that has a visible version of the part.
Recovery:
- Verify that the correct release name and part name were specified.
- Specify a valid work area which has a visible version of the part.

Figure 37. Sample of an audit log file

Chapter 11. Maintaining your TeamConnection environment 131

TeamConnectionAction Additional information

CoreqCreate Release name, first defect or feature name, second defect or feature
name

CoreqDelete Release name, defect or feature name

DefectAccept Defect name

DefectAssign Defect name

DefectCancel Defect name

DefectClose **This action is not audited**

DefectComment Defect name

DefectDesign Defect name

DefectModify Defect name

DefectOpen Defect name

DefectReopen Defect name

DefectReturn Defect name

DefectReview Defect name

DefectSize Defect name

DefectVerify Defect name

DefectView Defect name

DriverAssign Driver name, release name, new driver owner’s TeamConnection user ID

DriverCheck Driver name, release name

DriverCommit Driver name, release name

DriverComplete Driver name, release name

DriverCreate Driver name, release name

DriverDelete Driver name, release name

DriverExtract Driver name, release name

DriverModify Driver name, release name

DriverView Driver name, release name

EnvCreate Tester’s TeamConnection user ID, release name, environment name

EnvDelete Environment name, release name

EnvModify Tester’s TeamConnection user ID, release name, environment name

FeatureAccept Feature name

FeatureAssign Feature name

FeatureCancel Feature name

FeatureClose **This action is not audited**

FeatureComment Feature name

FeatureDesign Feature name

FeatureModify Feature name

FeatureOpen Feature name

132 Administrator’s Guide

TeamConnectionAction Additional information

FeatureReopen Feature name

FeatureReturn Feature name

FeatureReview Feature name

FeatureSize Feature name

FeatureVerify Feature name

FeatureView Feature name

FixActive Defect or feature name, release name, component name

FixAssign Defect or feature name, release name, component name

FixComplete Defect or feature name, release name, component name

FixCreate Defect or feature name, release name, component name

FixDelete Defect or feature name, release name, component name

HostCreate TeamConnection user ID, host name, user login on host

HostDelete TeamConnection user ID, user login on host, host name

MemberCreate Driver name, defect or feature name, release name

MemberDelete Driver name, defect or feature name, release name

NotifyCreate TeamConnection user ID, component name, interest group

NotifyDelete TeamConnection user ID, component name

PartAdd Path name, release name, SID

PartCheckIn Path name, release name, SID

PartCheckOut Path name, release name, SID

PartDelete Path name, release name

PartExtract Path name, release name, SID

PartForceIn **Audited via PartCheckIn**

PartForceOut **Audited via PartCheckOut**

PartLink Path name, release name, new release name, SID

PartLock Path name, release name, SID

PartLockForce **Audited via PartLock**

PartMark Path name, release name, SID

PartMerge Path name, release name, work area name, source release name,
**Also audited via underlying PartCheckOut, PartCheckIn, and
PartExtract actions**

PartModify Path name, release name

PartOverrideR Path name, release name, cancel flag, workarea name, User ID

PartReconcile Path name, release name, work area name, **Also audited via
underlying PartCheckOut, PartCheckIn, and PartExtract actions**

PartRecreate Path name, release name

PartRecreaForce **Audited via PartRecreate**

Chapter 11. Maintaining your TeamConnection environment 133

TeamConnectionAction Additional information

PartRename Path name, new path name, release name

PartRenameForce **Audited via PartRename**

PartResolve Base name, release name

PartRestrict Path name, release name, cancel flag

PartUndo Path name, release name, undo type, SID

PartUndoForce **Audited via PartUndo**

PartUnlock Path name, release name

PartView Path name, release name

ReleaseCreate New release name

ReleaseDelete Release name, new release name

ReleaseExtract Release name, new release name

ReleaseLink Release name, new release name

ReleaseMerge Release name, work area name, source release name, **Also audited
via underlying PartCheckOut, PartCheckIn, and PartExtract actions**

ReleaseModify Release name, new release name

ReleaseRecreate Release name, new release name

ReleaseView Release name, new release name

Report **With -where flag: view name, criteria **With -help flag: help, none
**With -testClient flag: test, none **With -testServer flag: test, none

ShadowCreate Shadow name, release name

ShadowDefine Type name

ShadowDelete Shadow name, release name

ShadowDisable Shadow name, release name

ShadowEnable Shadow name, release name

ShadowModify Shadow name, release name

ShadowRedefine Type name

ShadowSync Shadow name, release name, workarea or driver name

ShadowUndefine Type name

ShadowVerify Shadow name, release name, workarea or driver name

ShadowView Shadow name, release name

SizeAssign Defect or feature name, component name, release name

SizeAccept Defect or feature name, component name, release name

SizeCreate Defect or feature name, component name, release name

SizeDelete Defect or feature name, component name, release name

SizeReject Defect or feature name, component name, release name

TestAbstain Defect name, release name, environment name, tester’s
TeamConnectionuser ID

134 Administrator’s Guide

TeamConnectionAction Additional information

TestAccept Defect name, release name, environment name, tester’s
TeamConnectionuser ID

TestAssign Defect name, environment name, new tester’s TeamConnection user ID

TestCreate Defect name, environment name, release name, tester’s
TeamConnectionuser ID

TestDelete Defect name, environment name, release name

TestReject Defect name, release name, environment name, tester’s
TeamConnectionuser ID

WorkareaAssign Defect or feature name, release name, new work area owner’s
TeamConnectionuser ID

WorkareaCancel Defect or feature name, release name

WorkareaCheck Defect or feature name, release name, driver name

WorkareaCommit Defect or feature name, release name

WorkareaComplet Defect or feature name, release name

WorkareaCreate Defect or feature name, release name

WorkareaExtract Work area name, release name

WorkareaFix Defect or feature name, release name

WorkareaIntegra Defect or feature name, release name

WorkareaModify Defect or feature name, release name, target

WorkareaReconcile Release name, work area name, **Also audited via underlying
PartCheckOut, PartCheckIn, and PartExtract actions**

WorkareaTest Defect or feature name, release name

WorkareaView Defect or feature name, release name

UserCreate New user ID

UserDelete User ID

UserRecreate User ID

UserModify User ID

UserView **No additional information is audited**

VerifyAbstain Defect or feature name, TeamConnection user ID

VerifyAccept Defect or feature name, TeamConnection user ID

VerifyAssign Defect or feature name, TeamConnection user ID of the new verification
record owner

VerifyReject Defect or feature name, TeamConnection user ID

Cleaning up the audit log

The tccleanu utility is not available on Windows NT.

Chapter 11. Maintaining your TeamConnection environment 135

TeamConnection continually appends information to the end of the audit log. To keep
this file from growing too large, type the following from a command line in the directory
containing your TeamConnection audit log. If you need to maintain the audit.log for
more than one TeamConnection family, then type this command from the directory
where each audit log is located. Before issuing this command, stop the family server
(refer to page “Stopping the servers” on page 46).

tccleanu fileSize

Where fileSize is the size of the specified file in bytes. If you do not specify the size, the
default is 256000.

TeamConnection creates a backup file called audit1.log. It places this file in the
directory where the audit log is located and from which you issue the tccleanu
command. You can rename this file to any name you want for archive purposes. If you
do not rename the file, TeamConnection keeps three backup logs in addition to the
current log: audit2.log, audit3.log, and audit4.log. Each time you run the tccleanu
program, TeamConnection moves the contents of each log file as follows:

1. audit3.log information is moved to audit4.log.

2. audit2.log information is moved to audit3.log.

3. audit1.log information is moved to audit2.log.

4. audit.log information is moved to audit1.log.

After this command is issued, the audit.log file is empty and ready to log new
information.

Using the trace facility

TeamConnection provides environment variables for trace. Modify the trace environment
variables only when directed to do so by an IBM service representative.

The names of the TeamConnection trace environment variables, the purpose they
serve, and the TeamConnection component that uses the environment variable are
listed in the following table:

Environment variable Purpose Used by

TC_TRACE Specifies the variable that lets the
user designate which parts should be
traced. You should modify this only
when directed to do so by an IBM
service representative. Otherwise it is
set to null.

Client and family and
build servers

TC_TRACEATTEMPTS Specifies the maximum number of
failed trace attempts accepted before
giving up. You should modify this only
when directed to do so by an IBM
service representative.

Client and family and
build servers

136 Administrator’s Guide

Environment variable Purpose Used by

TC_TRACEDELAY Specifies the amount of time in
seconds that TeamConnection waits,
when a trace attempt fails, before
attempting another trace. The default
is 1 second. You should modify this
only when directed to do so by an
IBM service representative.

Client and family and
build servers

TC_TRACEFILE Specifies the output (part path and
name) of the trace that the user
designates using TC_TRACE.

Client and family and
build servers

TC_TRACESIZE Specifies the maximum size of the
trace file in bytes. If this size is
reached, wrapping occurs. The
default is one million bytes.

Client and family and
build servers

Backing up the TeamConnection database

Your TeamConnection database needs to be backed up regularly using the DB2 backup
utilities available from the DB2 Control Center or the following command from the
command line processor:

db2 backup database family_name to backup_directory

Substitute your family name for family_name and a directory path for your backed up
database for backup_directory. The DB2 backup utility will place a compressed version
of the database in the backup directory path. Be sure to set file permissions for the
backup directory such that the compressed backup file is accessible. It is recommended
that you copy this backup file to an external backup media (i.e. tape) to protect against
file system failures. Refer to the IBM DB2 Universal Database Administration Guide for
details on this process.

Note: It is not recommended that you make changes to your database by issuing
INSERT, UPDATE, or DELETE statements or by changing or deleting database
tables or the columns defined in TeamConnection database tables. Changing
your database in these ways, through the DB2 administrator tools, the DB2
command line processor, the TeamConnection migration tools, or the tcupdb tool
can corrupt your TeamConnection database. Any such changes are made at
your own risk. Please contact your IBM representative for information on the
terms of IBM customer support.

Chapter 11. Maintaining your TeamConnection environment 137

|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

138 Administrator’s Guide

Chapter 12. Enhancing SQL performance

The performance of SQL applications can be impaired after many updates, deletes, or
inserts have been made. Generally, newly inserted rows cannot be placed in a physical
sequence that is the same as the logical sequence defined by the index. This means
that the database manager must perform additional physical reads to access the data,
because logically sequential data may be on different data pages.

In general, reorganizing a table takes more time than running statistics. Performance
may be improved sufficiently by obtaining the current statistics for your data and
rebinding your applications, so try this first. If this does not improve performance, the
data in the tables and indexes may not be arranged efficiently, so reorganization may
help.

For more details on using RUNSTATS and reorganizing table data, see the DB2
Universal Database Administration Guide and Command Reference.

Collecting statistics using the RUNSTATS utility

The RUNSTATS utility updates statistics in the system catalog tables to help with the
query optimization process. Without these statistics, the database manager could make
a decision that would adversely affect the performance of an SQL statement. The
RUNSTATS utility allows you to collect statistics on the data contained in the tables,
indexes, or both tables and indexes.

Use the RUNSTATS utility to collect statistics based on both the table and the index
data to provide accurate information to the access plan selection process in the
following situations:

v When a table has been loaded with data, and the appropriate indexes have been
created.

v When a table has been reorganized with the REORG utility.

v When there have been extensive updates, deletions, and insertions that affect a table
and its indexes. (Extensive in this case may mean that 10 to 20 percent of the table
and index data has been affected.)

v Before binding application programs whose performance is critical

v When comparison with previous statistics is desired. Running statistics on a periodic
basis permits the discovery of performance problems at an early stage, as described
below.

v When the prefetch quantity is changed.

v When you have used the REDISTRIBUTE NODEGROUP utility.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 139

|

Analyzing statistics

Analyzing the statistics can indicate when reorganization is necessary. Some of these
indications are:

v Clustering of indexes

Index scans that are not index-only accesses might perform better with higher cluster
ratios. A low cluster ratio leads to more I/O for this type of scan, since after the first
access of each data page, it is less likely that the page is still in the buffer pool the
next time it is accessed. Increasing the buffer size can improve the performance of
an unclustered index. (See for information about how the database manager can
improve index scan performance for indexes with low cluster ratios and the optimizer
uses index statistics.)

If the table data was initially clustered with respect to a certain index, and the above
clustering information indicates that the data is now poorly clustered for that same
index, you may wish to reorganize the table to re-cluster the data with respect to that
index.

v Overflow of rows

The overflow number indicates the number of rows that do not fit on their original
pages. This can occur when VARCHAR columns are updated with longer values. In
such cases, a pointer is kept at the row’s original location. This can hurt
performance, because the database manager must follow the pointer to find the
row’s contents, which increases the processing time and may also increase the
number of I/Os.

As the number of overflow rows grows higher, the potential benefit of reorganizing
your table data also increases. Reorganizing the table data will eliminate the
overflowing of rows.

v Comparison of file pages

The number of pages with rows can be compared with the total number of pages that
a table contains. Empty pages will be read for a table scan. Empty pages can occur
when entire ranges of rows are deleted.

As the number of empty pages grows higher, so does the need for a table
reorganization. Reorganizing the table can compress the amount of space used by a
table, by reclaiming these empty pages. In addition to more efficient use of disk
space, reclaiming unused pages can also improve the performance of table scan,
since fewer pages will be read into the buffer pool.

v Number of leaf pages

The number of leaf pages predicts how many index page I/Os are needed for a
complete scan of an index.

Random update activity can cause page splits to occur that increase the size of the
index beyond the minimum amount of space required. When indexes are rebuilt
during the reorganization of a table, it is possible to build each index with the
minimum amount of space possible.

Note: A default of ten percent free space is left on each index page when the
indexes are rebuilt. The environment variable DB2_INDEX_FREE can be used to

140 Administrator’s Guide

establish a value other than the default for the amount of free space for each
index page. The maximum amount of free space for each index page is sixty
percent.

RUNSTATS can also help you determine how performance is related to changes in your
database. The statistics show the data distribution within a table. When used routinely,
RUNSTATS provides data about tables and indexes over a period of time, thereby
allowing performance trends to be identified for your data model as it evolves over time.

Ideally, you should rebind application programs after running statistics, because the
query optimizer may choose a different access plan given the new statistics. See
“Rebinding the family database” on page 180 for instructions on rebinding the
TeamConnection database.

If you do not have enough time available to collect all of the statistics at one time, you
may choose to periodically run RUNSTATS to update only a portion of the statistics that
could be gathered.

However, you should periodically use RUNSTATS to gather both table and index
statistics at once, to ensure that the index statistics are synchronized with the table
statistics. Index statistics retain most of the table and column statistics collected from
the last run of RUNSTATS. If the table has been modified extensively since the last
time its table statistics were gathered, gathering only the index statistics for that table
will leave the two sets of statistics out of synchronization.

You may wish to collect statistics based only on index data in the following situations:

v A new index has been created since the utility was performed and you do not want to
re-collect statistics on the table data.

v There have been a lot of changes to the data that affect the first column of an index.

The RUNSTATS utility allows you to collect varying levels of statistics. For tables, you
can collect basic level statistics or you can also collect distribution statistics for the
column values within a table. For indexes, you can collect basic level statistics or you
can also collect detailed statistics which can help the optimizer better estimate the I/O
cost of an index scan.

Note: Statistics are not collected for LONG or large object (LOB) columns.

Reorganizing table data

The REORGCHK command returns information about the physical characteristics of a
table, and whether or not it would be beneficial to reorganize that table. This command
can be used through the command line processor. See the Command Reference for
more information, including how to interpret the command output.

The REORG utility optionally rearranges data into a physical sequence according to a
specified index. REORG has an option to specify the order of rows in a table with an

Chapter 12. Enhancing SQL performance 141

index, thereby clustering the table data according to the index and improving the
CLUSTERRATIO or CLUSTERFACTOR statistics collected by the RUNSTATS utility. As
a result, SQL statements requiring rows in the indexed order can be processed more
efficiently. REORG also stores the tables more compactly by removing unused, empty
space.

You may wish to consider the following factors to determine when to reorganize your
table data:

v The volume of insert, update, and delete activity

v Any significant change to the performance of queries which use an index with a high
cluster ratio

v Running statistics (RUNSTATS) does not improve the performance of queries

v The REORGCHK command indicates a need to reorganize your table

v The cost of reorganizing your table, including the CPU time, the elapsed time, and
the reduced concurrency resulting from the REORG utility locking the table until the
reorganization is complete.

To execute the REORG utility, you must have SYSADM, SYSMAINT, SYSCTRL or
DBADM authority, or CONTROL privilege on the table.

Applying these techniques to TeamConnection

TeamConnection is a diverse SQL application whose performance characteristics can
be very sensitive to the statistics available to DB2 at the time the access plan for a
given SQL statement is built. TeamConnection uses both dynamic SQL (as in a report)
and static SQL, which means that some access plans are built dynamically when
queries are encountered, while others are statically bound at bind time.

When you encounter a TeamConnection performance problem, the first approach
should be to determine how recently RUNSTATS was performed against your family,
and whether TeamConnection was then re-bound to refresh the access plans. If the
performance problems persists after refreshing the statistics and access plans, use
REORGCHK to determine which tables would benefit from reorganization, and then
reorganize (using the REORG utility) those tables.

TeamConnection is designed such that the primary key index is the preferred index to
organize a table. Primary key indexes are those with an index name that begins with
PK. Refer to the product softcopy documentation and readme.txt file for any exceptions
to this guideline.

When REORG, RUNSTATS, and REBIND do not improve performance

If a performance problem persists, DB2 provides numerous tuning parameters that an
administrator can update. Caution should be used in modifying any of these
parameters. It is recommended that you modify a single parameter (or a small, related
set of parameters) at time, and then run a representative workload to determine the

142 Administrator’s Guide

impact of the modification. Many of these changes are not applied immediately, so it is
advisable to stop and restart the DB2 instance after changing the DB2 configuration.

See the DB2 Universal Database Administration Guide, particularly the sections that
discuss getting and updating the database manager and database configurations, for
details about configuration and tuning opportunities.

Table spaces and buffer pools

The Data Definition Language (DDL) used to define the TeamConnection database
schema describes a number of table spaces for the tables that contain your
TeamConnection family’s data. If you assign those tables to separate I/O devices and
separate I/O cards, you can improve the degree of I/O parallelism that DB2 provides
TeamConnection.

By assigning these tablespaces to separate buffer pools and tuning the buffer pools for
your system configuration, you can also improve the overall performance of your
TeamConnection family.

Configuration and tuning

The optimal values for the DB2 configuration and tuning parameters will be unique to
each TeamConnection family and system.

When you create a new family, TeamConnection creates a DB2 database and sets the
following values for certain database configuration parameters. Use caution when
modifying the values to which TeamConnection sets these parameters.

APPLHEAPSZ = 1280
This parameter defines the number of private memory pages available to be
used by the database manager on behalf of a specific agent or subagent.

BUFFPAGE = 12000
This parameter controls the size of a buffer pool when the CREATE
BUFFERPOOL or ALTER BUFFERPOOL statement is run.

DBHEAP=2400
This parameter indicates the maximum amount of space that the catalog cache
can use from the database heap (dbheap). The catalog cache is used to store
table descriptor information that is used when a table, view or alias is
referenced during the compilation of an SQL statement.

DLCHKTIME = 1000
This parameter defines the frequency at which the database manager checks
for deadlocks among all the applications connected to a database.

LOGFILSIZ = 4000
This parameter determines the number of pages for each of the configured
logs. A page is 4KB in size.

Chapter 12. Enhancing SQL performance 143

LOGPRIMARY = 5
This parameter specifies the number of primary logs that will be created.

LOGSECOND = 30
This parameter specifies the number of secondary log files that are created
and used for recovery log files (only as needed).

On OS/2, the following additional database parameters are set when you
create a family. The value for the DBHEAP parameter is set to a different
value on OS/2 than on the remaining server platforms.

APP_CTL_HEAP_SZ=128
This parameter determines the maximum size, in 4 KB pages, for
the application control shared memory. Application control heaps
are allocated from this shared memory.

CATALOGCACHE_SZ=32
This parameter sets the catalog cache size. The catalog cache is
used to store table descriptor information that is used when a table,
view or alias is referenced during the compilation of an SQL
statement.

DBHEAP=600
This parameter indicates the maximum amount of space that the
catalog cache can use from the database heap (dbheap).

LOCKLIST=50
This parameter indicates the amount of storage that is allocated to
the lock list. There is one lock list per database and it contains the
locks held by all applications concurrently connected to the
database.

MAXAPPLS=32
This parameter specifies the maximum number of concurrent
applications that can be connected (both local and remote) to a
database.

TeamConnection leaves all other DB2 database configiration parameters at their DB2
default values.

144 Administrator’s Guide

|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

Chapter 13. Monitoring family use

TeamConnection provides monitoring tools that enable you to keep track of how family
servers are being used:

v A daemon monitor accessible from the family administrator GUI or a line command
(monitor) for monitoring the activity of the TeamConnection server daemons in real
time.

v A license monitor command (tclicmon) for gathering information from the audit log
concerning the number of users who have contacted a TeamConnection family in a
given time interval.

Using the server daemon monitor

The TeamConnection server daemon monitor permits you to monitor the activity of the
TeamConnection server daemons. It makes use of the server’s shared memory space.
Each TeamConnection daemon, as well as the monitor itself, attaches to the same
shared memory segment. Each time a TeamConnection server daemon services a
request, the shared memory segment for that particular server daemon is updated with
information regarding the user who has requested the work and the nature of the
request.

You can use the server daemon monitor in a number of ways:

v To determine the activity of the server

v To determine which users issue time-consuming requests

v To determine the total number of requests serviced by the TeamConnection server
and the number serviced by each server daemon since it was started

v To determine if there is a problem with one or more of the server daemons

Using the monitor on the Family Servers window

The Family Servers window provides a family monitor area that you can use to monitor
the TeamConnection family daemons. To open this window, follow these steps:

1. Do one of the following to display the TeamConnection Family Administrator
window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a prompt.

2. Double-click the family icon for the family you want to start. The Family Servers
window appears.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 145

To start the server daemon monitor, you must start the family you want to monitor on
the TeamConnection server machine.

The monitor section of this window has the following fields:

Hits This text area displays the total number of requests processed by all family
daemons.

Refresh Interval
This text box displays the interval in seconds at which the information in the
Family Monitor window is updated. Use the up and down buttons to increase
or decrease the refresh interval.

Daemon information

This table displays the following status information for each family daemon.

Hits The number of requests processed by the daemon.

Index The position of the daemon. If you have five daemons running, for
example, each one is numbered 01 through 05.

PID The operating system process ID for the daemon.

Figure 38. Family Servers window

146 Administrator’s Guide

Status Line
The current command being executed by the daemon.

Using the monitor command

To start the server daemon monitor, you must start the family you want to monitor on
the TeamConnection server machine. The server daemon monitor program is located in
the teamcInstallPath\bin directory. To start the server daemon monitor, issue the
following command:

monitor refreshInterval [width] [-raw]

Where:

v refreshInterval indicates the time in seconds between successive screen updates. If
you start the monitor with a refresh interval of 2, for example, then the activity
monitor screen is updated with new information every 2 seconds. A refresh interval of
0 displays the monitor information once and then terminates.

Set the refresh interval to a number low enough to capture requests as they are
issued and processed. If you set the refresh interval too high, you may never see
any activity occurring because the server daemon would have received and
processed the request before the screen is updated. A refresh interval of 1 or 2
seconds is usually sufficient.

v width indicates the number of characters of status information to display for each
TeamConnection server daemon. The default is 132 characters. The maximum is
also 132 characters.

v -raw causes the monitor to display information in a raw format. The -raw option also
causes the width parameter to be ignored. The raw format is separated by |
characters, as in the following example:

*|25|1|1|
01|01234|00025| | |
..

The asterisk in the first column marks the start of information for the family. The next
three columns represent the total hits that the family has received, the daemon
count, and the number of active daemons. The subsequent lines show information for
each daemon: the index, process ID, hits for each daemon, phase (60 characters),
and status line (256 characters). The final line of output for each family is a line of
periods. This output will be displayed every refresh interval.

After you issue this command, an activity monitor screen displays, showing which
server daemons are running and which are servicing requests. To exit the server
daemon monitor, press any key.

The following is an example of a TeamConnection server daemon monitor screen
showing 3 TeamConnection server daemons running. Two of these daemons are
servicing requests. This example shows formatted output. See the description of the
-raw parameter, above, for an example of raw output.

Chapter 13. Monitoring family use 147

3 of 3 teamcd daemons running. Shared mem size is 1088.
Press any key to quit.
Total hits = 441

01,16504,00143,

02,15454,00152,statusphase = getListByBaseName,1998/02/26,08:56:54,
Report,ksloop,ksloop,ksloop1.raleigh,DefectVi
ew,state not in ('returned','canceled','verify','cl

03,12364,00146,

v The first line shows that all three of the TeamConnection server daemons are running
and that the monitor and the server daemons are using 1088 bytes of shared
memory.

v The second line indicates the total number of requests serviced by the server
daemons since it was last started.

v The remaining lines show one status line for each server daemon. The status lines
consist of comma-separated columns showing the following information for each
daemon. If a daemon is not currently servicing requests, then only the first three
columns of information are displayed. The amount of information displayed is also
controlled by the width option specified with the monitor command. If you issue the
monitor command without the width option, 132 characters of information are shown.

Column number
Information displayed

1 Daemon index. The index number of the TeamConnection server daemon in
the shared memory segment. If a server daemon is stopped normally while
the server daemon monitor is running, then -- appears in this column
instead of a process ID. If a server daemon is stopped abruptly or
abnormally while the server daemon monitor is running, then >> appears in
this column. In either case, the information about hte request that was being
processed when the daemon was stopped remains on the screen. After a
daemon is started again, its process ID appears in this column.

2 Daemon process ID. The process ID of the TeamConnection server
daemon.

3 The number of requests serviced by the daemon since it was started.

4 Status phase information, indicating the C++ method being executed.

5 The date the last request to the server daemon was issued. The format is
mm/dd/yy.

6 The time the last request to the server daemon was issued. The format is
hh:mm:ss.

7 The TeamConnection request that is being serviced.

8 The TeamConnection user ID that issued the request.

9 The login ID of the TeamConnection user who issued the request.

148 Administrator’s Guide

10 The hostname of the machine from which the request was issued.

11 Additional information about the request being serviced. This can include,
for example, details about a TeamConnection query.

Monitoring the activity of the server daemons

You can use the TeamConnection server daemon monitor to determine if you have
enough server daemons running for a family:

v If you find that all daemons are constantly in use, then you may need to increase the
number of daemons you start when you start the family server. Each
TeamConnection family server daemon can process only one request at a time. If all
daemons are busy processing requests, new requests are rejected. Users whose
requests are rejected receive a message like the following:

0010-250 A connection cannot be established with family or port testfam at
node testfam on port 9001.

An error occurred while processing the connect system function on the
TeamConnection server. The connection request has been rejected by
the TeamConnection server.

Recovery:

- Verify that the connection information displayed in the
message is correct and that the TeamConnection server
is running.

- If the error occurs frequently, the TeamConnection server
daemons may be overloaded by incoming requests.
Increase the number of TeamConnection server daemons
to alleviate this problem.

- If the problem persists, contact the system administrator or
the family administrator.

Usually a request can be processed very quickly, but some requests can take several
seconds to complete if the information being requested is lengthy or the action is
complex, as in a driver -commit request. If your server is having trouble processing
requests, you may want to stop the server and then restart it with more deamons,
provided your license agreement permits you to do so.

v If you find that one or more daemons are rarely used, then you may need to
decrease the number of daemons you start when you start the family server.

Detecting time-consuming requests

If you notice that a specific request of a server daemon takes a long time to complete,
then you can cancel the request by recycling the daemon. To recycle a server daemon,
issue one of the following commands, replacing pid with the process ID of the daemon.

Chapter 13. Monitoring family use 149

kill pid

Refer to your Windows NT documentation.

kill -1 pid

kill -1 pid

kill -1 pid

See “Stopping the servers” on page 46 for more information on recycling server
daemons.

Monitoring server daemon problems

Column 3 of the server daemon monitor screen displays the number of requests
serviced by each server daemon. Requests should be nearly evenly distributed among
the daemons. If one or more daemons shows an unusually low number of requests
processed, then there may be a problem with that daemon. There can be one or more
reasons for a low processing rate for a daemon:

v A request can take a long time to process. Actions such as driver -commit, driver
-check -long, driver -extract, release -extract, and report can be time
consuming.

v A request may be held pending the release of a lock on a database table. Certain
actions, such as driver -commit, need to lock some of the database tables so that
other users do not damage the data integrity before the request completes. If a
database table is locked and an update request for that table is received, then the
request will be held until the database table is unlocked. An update request is any
request that alters the contents of the information in a database table. Requests that
query the contents of a locked database table can still be completed.

Using the license monitor

Use the TeamConnection license monitor to obtain a snapshot of the number of users
who have contacted a TeamConnection family in a given time interval. The license
monitor obtains family use information from the audit log. By default, only the audit.log
for the current family is processed, but you can request information for another family
on the same server.

150 Administrator’s Guide

Note: The license monitor needs to use an audit log file that is not currently in use by
a family server. If the audit log is in use, stop the family server before running
the license monitor.

The license monitor is a command that allows TeamConnection family administrators to
monitor compliance with the terms of your license agreement by showing the number of
concurrent uses of TeamConnection for a given time period. It is assumed that the
family administrators know how many licenses the company obtained for
TeamConnection.

The number of concurrent users is defined as the number of users who have contacted
a TeamConnection family in a given amount of time. The default is 15 minutes. If, for
example, you have 30 licenses and a total pool of 100 users, then up to 30 users can
work with a TeamConnection family for any given period of 15 minutes.

The license monitor command does not enforce the limit of the number of licenses.
Even if the number of actual users exceeds the number of licenses for
TeamConnection, no attempt is made to limit access to a TeamConnection family. It is
the responsibility of the family administrator to monitor the license usage and if the
number of concurrent users exceeds the number of licenses for TeamConnection, then
the family administrator should contact IBM to obtain more licenses. The number of
licenses and the highest actual number of concurrent users should match.

The license monitor command is invoked from the directory of the family you want to
monitor. It uses the contents of the audit.log to determine how many users (defined by
each unique combination of user ID, login ID, and host name) have contacted the
TeamConnection family in a given date and time interval, according to periods of a
given duration (also called histograms). If, for example, use is to be monitored for two
hours from 08:00 to 10:00, then the license monitor checks the audit log for users each
15 minutes (the default): four times per hour or eight times in the two-hour interval.

The following is an example of how family use might be reported for this two-hour
period:

From 08:00:01 to 08:15:00, actual users: 1
From 08:15:01 to 08:30:00, actual users: 5
From 08:30:01 to 08:45:00, actual users: 5
From 08:45:01 to 09:00:00, actual users: 10
From 09:00:01 to 08:15:00, actual users: 8
From 09:15:01 to 09:30:00, actual users: 5
From 09:30:01 to 09:45:00, actual users: 3
From 09:45:01 to 10:00:00, actual users: 4

The highest amount of users in a given period is ten.

How the license monitor counts users

A user is any unique combination of user ID, login ID, and host name. If, a user
accesses the family using two user IDs from a single host name, for example, then that
is counted as two separate users.

Chapter 13. Monitoring family use 151

If more than one period in the interval being monitored has the same highest number of
users, then only the first occurrence of that number is reported. If, for example, you
monitor family use for three hours and the highest number of uses reaches twenty for
two separate fifteen-minute periods, only the first occurrence is reported.

Because most TeamConnection transactions have a short duration, only the starting
time for the transaction is considered by the license monitor command. When a long
transaction starts in one time period and ends in another time period, the license
monitor counts that use only once. It ignores the user’s transaction for the second time
period. A transaction in the audit log is processed only for those entries with a status of
SUCCESS.

Using the tclicmon command

You can issue the license monitor command any time, but it is recommended that you
issue it at least once a day, especially before or after the daily backup of the family.

When you issue the command, you specify values for the dates and times that mark the
interval you want to monitor. Use the following format for dates and times in the license
monitor command:

yyyy/mm/dd,hh:mm:ss

The comma between the date and the time is required. The default value for the begin
date and time is today at 00:00:01, and the default value for the end date and time is
today at the current time.

The license monitor command has three action flags:

tclicmon -highest
Displays only a summary of the report of concurrent users. The main element
of the report is the time period that had the maximum use.

tclicmon -report
Displays a full report of use for all time periods between the -begin date and
the -end date for the duration specified in the -timePeriod attribute. You can
request the report in several different formats.

tclicmon -help
Displays a summary of the command, showing some examples and the
defaults. To see help for the syntax, enter the command without any
arguments.

Note: The order of the arguments for the tclicmon command needs to follow the
sequence described in the syntax. For example, if you want to use a long report
format with a begin date, then the order is:

-report -long -begin

If you change the order of the command arguments as follows:

-report -begin -long

152 Administrator’s Guide

the command will not be executed and a usage message will appear.

Reporting highest uses

To display the highest use for an interval, issue the following command from the
directory containing the family you want to monitor:

tclicmon -highest
[-begin yyyy/mm/dd,hh:mm:ss]
[-end yyyy/mm/dd,hh:mm:ss]
[-timePeriod minutes]
[-input fileName]

Where:

v -begin yyyy/mm/dd,hh:mm:mm is the date and time of the beginning of the interval.
The default is today at 00:00:01.

v -end yyyy/mm/dd,hh:mm:ss is the date and time of the end of the interval. The default
is today at the current time.

v -timePeriod minutes is the duration of each time period, in minutes. The minimum
value is five minutes. The default is 15 minutes.

v -input fileName is the full path name of the file that contains the audit log. The
default is the file name ″$TC_DBPATH/audit.log″ (for AIX, HP-UX, and Solaris) or
″d:\%TC_DBPATH%\audit.log″ (for OS/2 or Windows NT), where TC_DBPATH: is the
top directory for the family.

To obtain the default report of only the highest use, type the following,

tclicmon -highest

If the current date and time when the command is issued is July 31, 1998, 08:15:59
and the current directory for the family is k:\testfam, then the result shown in the
standard output might be as follows:

*** TeamConnection License Monitor ***

Begin date:
1998/07/31,00:00:01

End date:
1998/07/31,08:15:59

Length of each time period, in minutes:
15

Audit file:
K:\testfam\audit.log

The period that has the highest number of concurrent users is:
beginDate endDate concurrentUsers
------------------- ------------------- ---------------
1998/07/31,07:00:00 1998/07/31,07:15:00 3

Chapter 13. Monitoring family use 153

Displaying a full use report

To display a full use report for an interval, issue the following command from the
directory containing the family you want to monitor:

tclicmon -report [-outputFormat]
[-begin yyyy/mm/dd,hh:mm:ss]
[-end yyyy/mm/dd,hh:mm:ss]
[-timePeriod minutes]
[-input fileName]

Where:

v -outputFormat is one of the following:

-csv Produces an output in comma-separated-values (CSV) format. This format
can be used to prepare charts with software that can import data in CSV
format.

– Each row corresponds to one time period.

– The fields are separated by a comma, and the dates are enclosed
between quotes, for example:

"1998/10/01,00:00:01","1998/10/01,14:30:15",10

-long This is the default format for the -report action. Produces an output with a
header and a footer, and the time periods are shown in the following table
format.

– Each field is displayed as a column heading.

– Field values appear under respective column heading.

– Each row corresponds to one time period.

-raw Produces an output in raw format:

– Each row corresponds to one time period.

– The fields are separated by a vertical bar, for example:

1998/10/01,00:00:01|1998/10/01,14:30:15|10

-stanza
Produces an output that is equivalent to the long format.

-table Produces an output without a header or a footer, and the time periods are
shown in the following table format:

– Each field is displayed as a column heading.

– Field values appear under respective column heading.

– Each row corresponds to one time period.

v -begin yyyy/mm/dd,hh:mm:mm is the date and time of the beginning of the interval.
The default is today at 00:00:01.

v -end yyyy/mm/dd,hh:mm:ss is the date and time of the end of the interval. The default
is today at the current time.

v -timePeriod minutes is the duration of each time period, in minutes. The minimum
value is five minutes. The default is 15 minutes.

154 Administrator’s Guide

v -input fileName is the full path name of the file that contains the audit log. The
default is the file name ″$TC_DBPATH/audit.log″ (for AIX, HP-UX, and Solaris) or
″d:\%TC_DBPATH%\audit.log″ (for OS/2 or Windows NT), where TC_DBPATH: is the
top directory for the family.

Examples
v To obtain a default detailed report (-long) on family use, type the following command:

tclicmon -report -begin 1998/07/31,04:00:01

If the current date and time is July 31, 1998, 08:15:59, the starting time is 04:00 and
the current directory for the family is k:\testfam, the result shown in the standard
output might be as follows:

*** TeamConnection License Monitor ***

Begin date:
1998/07/31,04:00:01

End date:
1998/07/31,08:15:59

Length of each time period, in minutes:
15

Audit file:
K:\testfam\audit.log

beginDate endDate concurrentUsers
------------------- ------------------- ---------------
1998/07/31,04:00:01 1998/07/31,04:15:00 2
1998/07/31,04:15:00 1998/07/31,04:30:00 1
1998/07/31,04:30:00 1998/07/31,04:45:00 0
1998/07/31,04:45:00 1998/07/31,05:00:00 0
1998/07/31,05:00:00 1998/07/31,05:15:00 0
1998/07/31,05:15:00 1998/07/31,05:30:00 0
1998/07/31,05:30:00 1998/07/31,05:45:00 0
1998/07/31,05:45:00 1998/07/31,06:00:00 0
1998/07/31,06:00:00 1998/07/31,06:15:00 2
1998/07/31,06:15:00 1998/07/31,06:30:00 1
1998/07/31,06:30:00 1998/07/31,06:45:00 0
1998/07/31,06:45:00 1998/07/31,07:00:00 0
1998/07/31,07:00:00 1998/07/31,07:15:00 3
1998/07/31,07:15:00 1998/07/31,07:30:00 0
1998/07/31,07:30:00 1998/07/31,07:45:00 0
1998/07/31,07:45:00 1998/07/31,08:00:00 1
1998/07/31,08:00:00 1998/07/31,08:15:00 0

The period that has the highest number of concurrent users is:
beginDate endDate concurrentUsers
------------------- ------------------- ---------------
1998/07/31,07:00:00 1998/07/31,07:15:00 3

v To obtain a detailed report on family use in table format (without the header and
footer), type the following command:

tclicmon -report -table -begin 1998/07/31,04:00:01

Chapter 13. Monitoring family use 155

If the current date and time is July 31, 1998, 08:15:59, the starting time is 04:00, and
the current directory for the family is k:\testfam, the result shown in the standard
output might be as follows:

beginDate endDate concurrentUsers
------------------- ------------------- ---------------
1998/07/31,04:00:01 1998/07/31,04:15:00 2
1998/07/31,04:15:00 1998/07/31,04:30:00 1
1998/07/31,04:30:00 1998/07/31,04:45:00 0
1998/07/31,04:45:00 1998/07/31,05:00:00 0
1998/07/31,05:00:00 1998/07/31,05:15:00 0
1998/07/31,05:15:00 1998/07/31,05:30:00 0
1998/07/31,05:30:00 1998/07/31,05:45:00 0
1998/07/31,05:45:00 1998/07/31,06:00:00 0
1998/07/31,06:00:00 1998/07/31,06:15:00 2
1998/07/31,06:15:00 1998/07/31,06:30:00 1
1998/07/31,06:30:00 1998/07/31,06:45:00 0
1998/07/31,06:45:00 1998/07/31,07:00:00 0
1998/07/31,07:00:00 1998/07/31,07:15:00 3
1998/07/31,07:15:00 1998/07/31,07:30:00 0
1998/07/31,07:30:00 1998/07/31,07:45:00 0
1998/07/31,07:45:00 1998/07/31,08:00:00 1
1998/07/31,08:00:00 1998/07/31,08:15:00 0

v To obtain a detailed report on family use in raw format (without the header and
footer), type the following command:

tclicmon -report -raw -begin 1998/07/31,04:00:01

If the current date and time is July 31, 1998, 08:15:59, the starting time is 04:00, and
the current directory for the family is k:\testfam, the result shown in the standard
output might be as follows:

1998/07/31,04:00:01|1998/07/31,04:15:00|2
1998/07/31,04:15:00|1998/07/31,04:30:00|1
1998/07/31,04:30:00|1998/07/31,04:45:00|0
1998/07/31,04:45:00|1998/07/31,05:00:00|0
1998/07/31,05:00:00|1998/07/31,05:15:00|0
1998/07/31,05:15:00|1998/07/31,05:30:00|0
1998/07/31,05:30:00|1998/07/31,05:45:00|0
1998/07/31,05:45:00|1998/07/31,06:00:00|0
1998/07/31,06:00:00|1998/07/31,06:15:00|2
1998/07/31,06:15:00|1998/07/31,06:30:00|1
1998/07/31,06:30:00|1998/07/31,06:45:00|0
1998/07/31,06:45:00|1998/07/31,07:00:00|0
1998/07/31,07:00:00|1998/07/31,07:15:00|3
1998/07/31,07:15:00|1998/07/31,07:30:00|0
1998/07/31,07:30:00|1998/07/31,07:45:00|0
1998/07/31,07:45:00|1998/07/31,08:00:00|1
1998/07/31,08:00:00|1998/07/31,08:15:00|0

v To obtain a detailed report on family use in comma-separated-values format (without
the header and footer), type the following command:

tclicmon -report -csv -begin 1998/07/31,04:00:01

156 Administrator’s Guide

If the current date and time is July 31, 1998, 08:15:59, the starting time is 04:00, and
the current directory for the family is k:\testfam, the result shown in the standard
output might be as follows:

"1998/07/31,04:00:01","1998/07/31,04:15:00",2
"1998/07/31,04:15:00","1998/07/31,04:30:00",1
"1998/07/31,04:30:00","1998/07/31,04:45:00",0
"1998/07/31,04:45:00","1998/07/31,05:00:00",0
"1998/07/31,05:00:00","1998/07/31,05:15:00",0
"1998/07/31,05:15:00","1998/07/31,05:30:00",0
"1998/07/31,05:30:00","1998/07/31,05:45:00",0
"1998/07/31,05:45:00","1998/07/31,06:00:00",0
"1998/07/31,06:00:00","1998/07/31,06:15:00",2
"1998/07/31,06:15:00","1998/07/31,06:30:00",1
"1998/07/31,06:30:00","1998/07/31,06:45:00",0
"1998/07/31,06:45:00","1998/07/31,07:00:00",0
"1998/07/31,07:00:00","1998/07/31,07:15:00",3
"1998/07/31,07:15:00","1998/07/31,07:30:00",0
"1998/07/31,07:30:00","1998/07/31,07:45:00",0
"1998/07/31,07:45:00","1998/07/31,08:00:00",1
"1998/07/31,08:00:00","1998/07/31,08:15:00",0

Chapter 13. Monitoring family use 157

158 Administrator’s Guide

Chapter 14. Server tools

The following tools are provided on the TeamConnection server. Generally, they are run
from the family directory and expect that all environment variables needed to run the
family server are set. The PATH environment variable should include the path
containing the tools since some tools will use another.

tcqry A standalone version of the teamc report command.

tcupdb A standalone routine to update a non-TeamConnection table in the
TeamConnection database.

Note: It is not recommended that you make changes to your database by issuing
INSERT, UPDATE, or DELETE statements or by changing or deleting database
tables or the columns defined in TeamConnection database tables. Changing
your database in these ways, through the DB2 administrator tools, the DB2
command line processor, the TeamConnection migration tools, or the tcupdb tool
can corrupt your TeamConnection database. Any such changes are made at
your own risk. Please contact your IBM representative for information on the
terms of IBM customer support.

Using tcqry

The tcqry tool is a standalone routine that issues a TeamConnection database query. It
is essentially the teamc report -general command, but bypasses the client/server
interface. The following is the syntax for the tcqry command:

tcqry -g tabspec [-s selspec] [-w whereClause] [-c colspec]

Where:

v -g tabspec is the table specification.

v -s selspec specifies the columns to select. If omitted, ″select *″ is assumed.

v -w whereClause is the where clause criteria.

v -c colspec is a series of numbers giving the minimum column widths for displaying
the selected columns in a tabular format. The last number will be propagated if there
are more columns than numbers. If omitted, a ″raw″ format is used with the ″|″
character separating the data columns.

The following example lists the user id, login and name of users defined to be
superusers in TeamConnection.

tcqry-g users -s id,login,name -w "superuser='yes'" -c 5,12

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 159

Using tcupdb

The tcupdb is a standalone routine that issues a database command to modify a
non-TeamConnection table in the TeamConnection database. The following are options
for the syntax of the tcupdb command:

tcupdb -g tabspec -s setClause [-w whereClause]

tcupdb -g tabspec -d [-w whereClause]

tcupdb -g tabspec -i insertClause

Where:

v -g tabspec is the table specification.

v -s setClause modifies the table with the given criteria.

v -w whereClause is the where clause criteria.

v -d [w whereClause] deletes the selected rows from the table.

v -i insertClause inserts rows into the table.

The following example deletes all rows of table mytab where the column col1 has a
value less than 1.

tcupdb -g mytab -d -w "col1<1"

The following example inserts a new row into table mytab with col1 = 5 and col2 = 7.

tcupdb -g mytab -i "(col1, col2) values (5, 7)"

The following example adds one to col2 of table mytab for rows with col1 = 5.

tcupdb -g mytab -s "col2 = col2 + 1" -w "col1 = 5"

160 Administrator’s Guide

Part 4. Appendixes

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 161

162 Administrator’s Guide

Appendix A. Family administration commands

You can use either the Family Administrator GUI or the command line to configure
TeamConnectionfamilies. This appendix explains how to do these tasks using the
various family administrator commands.

Doing these tasks from the command line sometimes requires extra steps and is more
prone to error. For these reasons, we recommend that you use the GUI when you can.
See “Part 2. Designing and creating your TeamConnection environment” on page 27 for
instructions on using the GUI.

This appendix explains how to do the following tasks from a command line:

To do this task, Go to this
page.

Creating a family database 163

Creating an initial superuser for a family 164

Creating or modifying authority groups 165

Creating or modifying interest groups 167

Configuring component or release processes 168

Defining configurable field types 170

Updating configurable field tables 173

Changing report formats 174

Configuring user exits 178

Rebinding the family database 180

Creating a family database

You can create a family database from a command line prompt using the fhcirt
command, as follows:

fhcirt -c -d databaseLocation loadfiles

Where:

v -c causes the DB2 database to be dropped (if it already exists) and created.

v -d databaseLocation specifies the location where the database should be created.
On Intel platforms, specify a drive, such as e:. On UNIX platforms, specify a directory
path, such as /disk2/database . If you omit this parameter, the database will be
created where DB2 is installed.

v loadfiles are the DB2 files to be loaded into the database. On Intel platforms, specify
the drive and directory path where the TeamConnection DB2 table definitions, view
definitions, and bind files are installed. The default directory path is \teamc\nls\cfg.
On UNIX platforms, specify the directory path where the TeamConnection DB2 table

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 163

definitions, view definitions, and bind files are installed. The default directory path is
$TC_HOME/nls/cfg. For both platforms, the files you need are *.ddl (table
definitions), *.ddv (view definitions), and *.bnd (bind files).

The family name is specified by the TC_FAMILY environment variable.

To create a family database named family1 on drive d:, set TC_FAMILY=family1 and
issue the following command:

fhcirt -c -d d: f:\teamc\nls\cfg*.ddl f:\teamc\nls\cfg*.ddv
f:\teamc\nls\cfg*.bnd

Note: The directory path \teamc\nls\cfg is the default installation path on Intel for the
TeamConnection DB2 files needed to create tables and views and bind the
family database. If you specify an installation path other than the default, make
sure the path you specify for the loadfiles parameter contains the
TeamConnection DB2 files.

Creating an initial superuser for a family

Before you can define users, components, and releases for a family, you need to create
a user ID with superuser access to the family. From a command line, you can do this
using the fhchdf command. Before you can use this command, you need to create the
family database and make sure the environment variable TC_DBPATH is set. You can
issue this command only once for each family. After the initial superuser ID has been
created, use the TeamConnection GUI or line commands to modify or create additional
users. If the family database has a component called ″root,″ then the fhchdf command
will not execute.

fhchdf -create
-user Name
-login Name
-address Name
-family Name
[-name Text]
[-area Name]
[-password Name]

Where:

v -user Name is the TeamConnection user ID for the superuser. If you omit this
parameter, it defaults to the value specified for the -login parameter. It is a good idea
to give the superuser an ID that is readily identifiable as a superuser. A good way to
do this is to preface the user ID with su_, such as -user su_john.

Note: This parameter is used only in single-user environments, such as OS/2.

v -login Name is the login ID for the superuser. This parameter is used in multiuser
environments, such as AIX, HP-UX, Solaris, and Windows NT, to identify the user
account to which the TeamConnection superuser ID is assigned. It is a good idea to
give the superuser an ID that is readily identifiable as a superuser. A good way to do

164 Administrator’s Guide

this is to preface the ID with su_, such as -login su_john. Single-user environments,
such as OS/2, do not define a separate login ID. If you omit the -user parameter, it
defaults to the value specified for the -login parameter.

v -address Name is the hostname of the family server from which the superuser will be
authorized to access the family, such as -address tcserver.

v -family Name is the name of the family for which you are defining the superuser. The
family must have already been created. An example is -family testfam.

v -name Text is the real name of the superuser, such as -name ″John Smith″. This
attribute is optional.

v -area Name is the development area in which the superuser works, such as -area
″User interface″. This attribute is optional.

v -password Name is the password that must be used by the initial superuser. A
password is required only if you created the family with the password-only or
password-or-host level of security. Under these security levels, if a password is not
created, then no one will have access to the database.

The following example creates a superuser ID for John Smith on the family server
tcserver for the family named robot:

fhchdf -create -user su_john -login jsmith -address tcserver
-family robot -name "John Smith" -area "User interface"
-password f5asdfjk

Creating or modifying authority groups

When a TeamConnection family is created, the authority table is primed with default
information contained in the authorit.ld file. This section provides instructions for
manually editing the authorit.ld file to create new authority groups or change information
about existing authority groups. When you change the authorit.ld file, you must also
reload the contents of the authority table in the TeamConnection database.

Instructions for using the Family Administrator GUI to create or modify authority groups
are on page 72.

Before you create or modify authority groups, you should be familiar with the
information in “Planning for user access to TeamConnection data” on page 70.

Editing the authorit.ld file

To add new authority groups or to add actions to an existing authority group, edit the
authorit.ld file. It is recommended that you keep the authorit.ld file in the family
directory. If you want to maintain common authority group definitions for more than one
family, however, you can store this file in a common directory; but you will need to
specify the fully-qualified path name for the authorit.ld file when you load it using the
fhclauth command.

Add entries to the file using the following format:

Appendix A. Family administration commands 165

AuthorityGroup|ActionName

AuthorityGroup
This is the name of an existing authority group or the name of a group that you
are creating. The name can be 15 characters long; it cannot contain blanks,
tabs, or vertical separators. For an existing authority group, type the name
exactly as it appears in the database table. The default names provided by
IBM use all lowercase characters.

ActionName
This is the name of an existing TeamConnection action. Specify only one
action per entry. You must type the name exactly as it appears in the database
table. Refer to the list of actions in the TeamConnection User’s Guide for the
correct spelling and capitalization. Certain actions cannot be included in an
authority group. These actions are noted in the table found in “Appendix F.
Worksheets” on page 251.

Reloading the authority table

Whenever you change the authorit.ld file, you must reload the contents of the authority
table before your users can use the new and changed authority groups.

You can reload the authority table as often as necessary. We recommend that you stop
the family server before you reload the authority table (see page “Stopping the servers”
on page 46 for instructions).

To reload the authority table, issue the following command from the server machine.
Before issuing this command, ensure that the TC_FAMILY environment variable is set
to the correct family name and TC_DBPATH is set to the correct database path name.

fhclauth path\authorit.ld

Where:

v path\authorit.ld is the path name of the authorit.ld file. If you specify a fully-qualified
path name, TeamConnection looks for the authorit.ld file in the path you specify. If
you specify only authorit.ld with no directory path, TeamConnection looks for the file
in the directory specified by the TC_DBPATH environment variable.

To verify that the authority table loaded correctly, use the report command to generate a
report on the authority table. For example, to verify that a new authority group named
general was added to the table, type the following from a client machine on an OS/2 or
TeamConnectioncommand line:

teamc report -view authority -where "name='general'"

If the table loaded correctly, information about the general authority group appears. If
the authority table did not load correctly, make the necessary changes to the authorit.ld
file and run the fhclauth command again.

166 Administrator’s Guide

For more information about the report -view command, refer to the Commands
Reference.

Creating or modifying interest groups

This section provides instructions for manually editing the interest.ld file to create or
modify interest groups. When you change the interest.ld file, you must also reload the
contents of the interest table.

Instructions for using the Family Administrator GUI to create or modify interest groups
are on page 78.

Before you create or modify interest groups, you should be familiar with the information
in “Planning for user notification” on page 77.

Editing the interest.ld file

To add new interest groups or to add actions to an existing interest group, edit the
interest.ld file. It is recommended that you keep the interest.ld file in the family directory.
If you want to maintain common interest group definitions for more than one family,
however, you can store this file in a common directory; but you will need to specify the
fully-qualified path name for the interest.ld file when you load it using the fhclintr
command.

Add entries to the file using the following format:

InterestGroup|ActionName

InterestGroup
This is the name of an existing interest group or the name of a group that you
are creating. The name can be up to 15 characters; it cannot contain blanks,
tabs, or vertical separators. For an existing interest group, type the name
exactly as it appears in the database table. The default names provided by
IBM use all lowercase characters.

ActionName
This is the name of an existing TeamConnection action. Specify only one
action per entry. You must type the name exactly as it appears in the database
table. Refer to the list of actions in the TeamConnection User’s Guide for the
correct spelling and capitalization. Certain actions cannot be included in an
interest group. These actions are noted in the table found in “Appendix F.
Worksheets” on page 251.

Reloading the interest table

Whenever you change the interest.ld file, you must reload the contents of the interest
table before your users can use the new and changed interest groups.

Appendix A. Family administration commands 167

You can reload the interest table as often as necessary. We recommend that you stop
the family server before you reload the interest table (see page “Stopping the servers”
on page 46 for instructions).

To reload the interest table, issue the following command from the server machine in
the directory where the interest.ld file is stored. Before issuing this command, ensure
that the TC_FAMILY environment variable is set to the correct family name and
TC_DBPATH is set to the correct database path name.

fhclintr path\interest.ld

Where:

v path\interest.ld is the path name of the interest.ld file. If you specify a fully-qualified
path name, TeamConnection looks for the interest.ld file in the path you specify. If
you specify only interest.ld with no directory path, TeamConnection looks for the file
in the directory specified by the TC_DBPATH environment variable.

To verify that the interest table loaded correctly, use the report command to generate a
report on the interest table. For example, to verify that a new interest group named
general was added to the table, type the following from a command line on a client
machine:

teamc report -view interest -where "name='general'"

If the interest table loaded correctly, information about the general interest group
appears. If the interest table did not load correctly, make the necessary changes to the
interest.ld file and run the command again.

For more information about the report -view command, refer to the Commands
Reference.

Configuring component or release processes

This section provides instructions for manually editing the comproc.ld and relproc.ld files
to configure processes. When you change the .ld files, you must also reload the
contents of the configurable process tables.

Instructions for using the Family Administrator GUI to configure processes are on page
99.

Before you configure processes, you should be familiar with the information in
“Chapter 8. Configuring family processes” on page 99.

Editing the comproc.ld and relproc.ld files

Information about configurable processes for components is stored in the comproc.ld
file. Information about configurable processes for releases is stored in the relproc.ld file.
When the family is created, the configurable process tables are created, based on the

168 Administrator’s Guide

settings in the comproc.ld and relproc.ld files. If you modify the configurable process
tables after the family is created, edit the .ld files and then run the fhclproc command.

To add new processes or change existing processes, edit the comproc.ld file for
component processes or the relproc.ld file for release processes. It is recommended
that you keep the comproc.ld and relproc.ld files in the family directory. If you want to
maintain common process definitions for more than one family, however, you can store
these files in a common directory; but you will need to specify the fully-qualified path
name for them when you load them using the fhclproc command.

Add entries to the file using the following format:

ProcessName|SubprocessName

ProcessName
The name of the process you are creating. The name can be up to 15
characters in length; it cannot contain blanks, tabs, or vertical separators.

SubprocessName
The name of a TeamConnection subprocess. You can specify only one of the
following subprocesses for each entry. If you want to include more than one
subprocess, you must have an entry for each subprocess. Type the name
exactly as it appears in the database.

The following are the subprocesses for components:

v none

v dsrDefect

v dsrFeature

v verifyDefect

v verifyFeature

The following are the subprocesses for releases:

v none

v approval

v fix

v driver

v test

v track

v trackfixhold

v tracktesthold

v trackcommithold

See “Release processes” on page 55 for an explanation of these subprocesses.

Appendix A. Family administration commands 169

Reloading the configurable process tables

After you edit an .ld file, use the fhclproc command to reload the contents of the
configurable component or release process tables with the changed values. Before
issuing this command, ensure that the TC_FAMILY environment variable is set to the
correct family name and TC_DBPATH is set to the correct database path name. The
format of the fhclproc command when reloading the component process table is:

fhclproc path\comproc.ld c

The format of the fhclproc command when reloading the release process table is:

fhclproc path\relproc.ld r

Where:

v path\comproc.ld or path\relproc.ld is the path name of the process definition file. If
you specify a fully-qualified path name, TeamConnection looks for the .ld file in the
path you specify. If you specify only the file name with no directory path,
TeamConnection looks for the file in the directory specified by the TC_DBPATH
environment variable.

v c indicates that you are reloading the component process table.

v r indicates that you are reloading the release process table.

To verify that the command successfully modified the tables, use the report command to
generate a report. To do this, type one of the following commands from an OS/2 or
TeamConnection command line:

teamc report -view Cfgcomproc
teamc report -view Cfgrelproc

If the table did not load correctly, make the necessary changes to the comproc.ld or
relproc.ld file and run the command again.

For more information about the report -view command, refer to the Commands
Reference.

Defining configurable field types

This section provides instructions for manually editing the config.ld file to define
configurable field types. When you change the config.ld file, you must also reload the
contents of the config table.

Instructions for using the Family Administrator GUI to define field types are on page 85.

Before you define field types, you should be familiar with the information in “Defining
configurable field types” on page 85.

It is recommended that you keep the config.ld file in the family directory. If you want to
maintain common configurable field definitions for more than one family, however, you

170 Administrator’s Guide

can store this file in a common directory; but you will need to specify the fully-qualified
path name for it when you load it using the fhclcnfg command.

When adding entries to the file, follow the existing format of the file:

fieldType|value|default|kind|driver|driverSeq|dependent|dependSeq|choiceOrder|
description|helpText

Information about configurable field types is stored in the config table. After you modify
the config table, you must reload it (see “Reloading the config table” on page 172).

The config table consists of the following information:

fieldType
Identifies the types of configurable fields that are defined for your family. You
specify one of these types when you configure a new field. You can create
new types, and you can configure the acceptable values for each type. You
must have at least one value for each type. The type field can have up to 15
characters, but it cannot contain blank spaces or tabs.

“Appendix B. Configurable field types” on page 181 describes the configurable
field types that are shipped by TeamConnection.

value This field represents the choices the user has for the configurable field. You
can add choices to the default fields shipped by TeamConnection and to the
fields created specifically for your family. The value can have up to 85
characters (single-byte or double-byte); but it cannot contain spaces or tabs. If
you want to enable users to set this configurable field type to the value null,
include the value null among the possible values.

Note: Because a user can abbreviate these values from the command line,
you cannot define a value that can be an abbreviation of another value
of the same type. For example, you cannot add a value of build to the
phase type, because a value of building already exists. Also, if a value
of 1 exists for the severity type, you cannot add a severity value of 12.

default This field indicates whether the defined name is used as the default when the
user does not enter a value for the configuration type. Valid values are either
yes or no, and only one name for each configuration type can have the default
field set to yes.

kind This field defines the method of resolving the configured value. A kind of 0 is
resolved by matching the (abbreviated) input value to a unique name value for
the type. For a kind of 1, the input may contain a list of any of the values in
the value field separated by blanks. No abbreviations may be used. For a kind
of 2, the input must match specific rules (6-digit numeric value, for example)
defined in the value field.

The next four fields are used to define dependencies between different parameters.
One parameter for a configurable object (Defect, Feature, etc.) can be defined to be a
″driver.″ Other parameters may be defined to be dependent on the driver. For example,

Appendix A. Family administration commands 171

you can define a driver type called ″state″ and a dependent type called ″city.″ The
possible values for ″city″ depend on the value selected for ″state.″

This dependency is set up by using non-zero values in the driver and dependent fields.
The values that can be selected for the dependent field are restricted by the value
selected for the driver. The values for the driver and dependent fields must be the same
for all rows of a given fieldType. The type with a given non-zero value in the dependent
field is dependent on the parameter that has that same value in its driver field. The
value that is selected for a driver field has some number in its driverSeq field. If the
driverSeq is zero, any name values of a dependent field can be selected. If the
driverSeq is not zero, then values that can be selected for the dependent parameter
must have a dependSeq value that is the same as the driverSeq value or zero.

driver The driver field for a dependent field.

driverSeq
The driver sequence number that associates a driver field with its dependent
fields.

dependent
The dependent field.

dependSeq
The dependent sequence number that associates a dependent field with its
driver field.

choiceOrder
The order in which the value is shown in the GUI.

description
This field contains the description of each value. The description field cannot
contain more than 63 characters, but it can be set to blank. The description
with the defined values appears on the GUI window when the field is
displayed.

helpText
A long description of the value. This description is displayed if the user
requests help for the value requested. A row in the config table with a null
value for the name may supply general help text for the config type. The help
text cannot contain newline characters if the field is enclosed in quotes. The
preferred (by the GUI) format of help text is:

"xyz: This is help for the value xyz."

The default configuration field types, along with their attributes, that IBM ships are listed
starting on page 181.

Reloading the config table

When you edit the config.ld file and change any values, you must reload the contents of
the config table so that TeamConnection recognizes the changes.

172 Administrator’s Guide

You can reload the config table as often as necessary. It is recommended that you stop
the family server before you reload the table (see page “Stopping the servers” on
page 46 for instructions).

To reload the config table, issue the following command from the server machine.
Before issuing this command, ensure that the TC_FAMILY environment variable is set
to the correct family name and TC_DBPATH is set to the correct database path name.

fhclcnfg path\config.ld

Where:

v path\config.ld is the path name of the configurable fields definition file. If you specify
a fully-qualified path name, TeamConnectionlooks for the file in the path you specify.
If you specify only the file name with no directory path, TeamConnection looks for the
file in the directory specified by the TC_DBPATH environment variable.

Changing values in the config table does not change any values that are already in the
database for existing records.

To verify that the command successfully modified the config table, use the report
command to generate a report. To do this, type the following from an OS/2 or
TeamConnection command line:

teamc report -view config

If the config table did not load correctly, make the necessary changes to the config.ld
file and run the command again.

For more information, about the report -view command, refer to the Commands
Reference.

Updating database views with new configurable field information

After you reload the contents of the config table (update the .tbl files), you must also
update the database views so that the new configurable fields appear in the GUI.

It is recommended that you stop the family server before you update the database
views (see “Stopping the servers” on page 46 for instructions).

To update the database views, issue the following command from the server machine.
Before issuing this command, ensure that the TC_FAMILY environment variable is set
to the correct family name and TC_DBPATH is set to the correct database path name.

fhcfupdv configFile view

Where:

v configFile is the name of the configurable field table (.tbl file) with which the view is
to be updated. TeamConnection looks for the file in the directory specified by the
TC_DBPATH environment variable.

Appendix A. Family administration commands 173

v view is the database view to be updated. The following are the views you can specify
with this command. Refer to the TeamConnection Commands Reference for a full
description of each of these views.

– DefectView

– Feature View

– DefectDownView

– FeatureDownView

– Users

– PartView

– PartFullView

– WorkAreaView

– ReleaseView

Updating TargetView and ConfigPartView

The TeamConnection Family Administrator GUI does not support adding configurable
fields to TargetView and ConfigPartView. To add configurable fields to these views,
follow these steps. You can perform this procedure any time after the database is
created.

1. Copy tcsource.tbl from the samples directory to the cfgField directory.

2. Edit tcsource.tbl for any new fields to be added. By default, these fields contain
definitions for only one configurable field: externalVersion.

3. To update TargetView with the configurable field information, issue the following
command from a command line prompt:

fhcfupdv tcsource.tbl TargetView

4. To update ConfigPartView with the configurable field information, issue the following
command from a command line prompt:

fhcfupdv tcsource.tbl ConfigPartView

Changing report formats

This section explains how you can manually change the position of report fields on the
reports TeamConnection generates for the user, defect, feature, partFullView, and
partView objects.

Instructions for using the Family Administrator GUI to change the reports are on page
93.

You can use the system editor to edit the following files. Before you change the report
formats, you might want to make backup copies of these files.

v cfgfield\Defect.fmt

v cfgfield\Feature.fmt

174 Administrator’s Guide

|

|
|
|
|

|

|
|

|
|

|

|
|

|

|

v cfgfield\Part.fmt

v chgfield\Partview.fmt

v cfgfield\Release.fmt

v cfgfield\User.fmt

v cfgfield\Workarea.fmt

Each .fmt file is divided into five sections, separated by colons. The sections are:

v StanzaViewFormat

v StanzaViewColumn

v TableViewFormat

v TableViewColumn

v TableViewHeader

The column sections describe the column name of each of the labels specified in the
format sections. The header section specifies how the columns appear in the table
format.

The format sections specify the layout of the report. For example, a format specification
of %3$-25.25s indicates the following:

% Start of format specification.

3 The sequence number of the field that is generated by TeamConnection. The
dollar sign must appear after the sequence number.

Note: If you add a new field to the report, you must adjust all sequence
numbers for fields that appear after the new field. If you create a new
configurable field and place it in position 3, for example, then you must
increase the sequence number of the field that was previously defined
in position 3 to 4 and increase the sequence number for all remaining
fields.

- The output is left-justified. If you do not include this character, the output is
right-justified.

25 The minimum number of characters (bytes) of output.

.25 The maximum number of characters (bytes) printed for all or part of the output
field, or minimum number of digits printed for integer values.

If you do not want the field displayed, type 0.0. For example, you have three
sequence fields: 1, 2, and 3. If you do not want sequence 2 displayed, you
type:

%1$-4.4s %2$-0.0s %3$-15.15s

s Type of data:

s for strings

ld for integers

Appendix A. Family administration commands 175

You can specify only a data type of s for configurable fields. Use ld to display
existing values, such as defect age.

You can also change or delete the format specification. Before you change a format
specification, be aware of the following:

v A format specification in the stanza view does not have to match the format
specification for the same field in the table view.

v Information in a stanza report appears in columns. When you specify the identical
minimum and maximum number of characters for all fields appearing in a column,
the report columns are left-justified. For example, Figure 39 on page 177 shows all
the fields in the first column defined as 25.25.

v When you change a format specification in the table view, adjust the matching
heading length in the table view header section. Otherwise, information will not
appear correctly under the headings when users display the table.

Figure 39 on page 177 shows a sample report format for the defect table after
configurable fields have been added. The changes are noted in bold font and are
described following the figure.

176 Administrator’s Guide

In Figure 39, the format of the shipped defect report was modified as follows:

v Added a new label, developer, at the end of the StanzaViewFormat section, and the
format specification %30$-25.25s

v Added the column name, developer, as the last entry in the StanzaViewColumn
section

Note: When you edit the StanzaViewColumn, you must maintain a continuous line of
text. Control characters are ignored and appear as output in the report.

StanzaViewFormat

prefix %01$s
name %02$s
reference %03$s
abstract %04$s
duplicate %05$s

state %06$-25.25s priority %07$-20.20s
severity %08$-25.25s target %09$-20.20s
age %10$s

compName %11$-25.25s answer %12$-20.20s
release %13$-25.25s symptom %14$-20.20s
envName %15$-25.25s phaseFound %16$-20.20s
driver %17$-25.25s phaseInject %18$-20.20s

addDate %19$-25.25s assignDate %20$-20.20s
lastUpdate %21$-25.25s responseDate %22$-20.20s
endDate %23$-25.25s

ownerLogin %24$-25.25s originLogin %25$-20.20s
ownerName %26$-25.25s originName %27$-20.20s
ownerArea %28$-25.25s originArea %29$-20.20s

developer %30$-25.25s

:
StanzaViewColumn
NOTE: please leave this section in English
prefix,name,reference,abstract,duplicate,state,priority,severity,
target,age,compName,answer,releaseName,symptom,envName,phaseFound,
driverName,phaseInject,addDate,assignDate,lastUpdate,responseDate,
endDate,ownerLogin,originLogin,ownerName,originName,ownerArea,
originArea,developer
:
TableViewFormat
%-4.4s %-15.15s %-15.15s %-8.8s %-8.8s %-8.8s %-3.3s %-3.3s %-4.4s %-55.55s %30$-9.
9s
:
TableViewColumn
NOTE: please leave this section in English
prefix,name,compName,state,originLogin,ownerLogin,severity,age,
priority,abstract,developer
:
TableViewHeader
pref name compName state originLo ownerLog sev age prio abstract developer
:

Figure 39. Sample report format after adding configurable fields

Appendix A. Family administration commands 177

v Added %30$-9.9s in the corresponding position for the developer entry in the
TableViewFormat section

v Added the column name developer in the TableViewColumn section

v Added a new label, developer, in the TableViewHeader section and added the
corresponding dashes in the next line

If the developer field had been added to the middle of the reports instead of to the end,
its sequence number and the sequence number of all remaining fields would need to be
adjusted.

Updating TargetView and ConfigPartView Reports

The TeamConnection Family Administrator GUI does not support modifying reports for
TargetView and ConfigPartView. To modify the reports for these views, follow these
steps. You can perform this procedure any time after the database is created.

1. Copy target.fmt from the samples directory to the cfgField directory.

2. Edit target.fmt for any new fields to be added. By default, these fields contain
definitions for only one configurable field: externalVersion.

Setting up user exits

This section provides instructions for manually updating the userExit file to add entries
that call user-defined programs during the processing of TeamConnection actions.

Instructions for using the Family Administrator GUI to set up user exits are on page 111.

Before you edit the userExit file, you should be familiar with the information in
“Chapter 9. Providing user exits” on page 103.

Note: The userExit file is copied to your family database directory from a file located in
the language subdirectory of the nls\cfg directory path in the TeamConnection
installation directory, for example, teamc\nls\cfg\enu. The version of the userExit
file in this location contains comments that are not copied when the family is
created using the Family Administrator GUI.

Editing the userExit file

The userExit file has no defined actions until you add entries for the user exits that your
organization will use. The entries you add specify the programs that you want started
for specific TeamConnection actions. For each user exit, add an entry using the
following format:

Action ExitID UEprogram UEparameter ENV=() #Comments

Use one or more blank spaces to separate each field in the entry. A line that begins
with a # sign is a comment. You can have blank lines in the file.

178 Administrator’s Guide

|

|

|
|
|

|

|
|

|

The userExit file is located in the config subdirectory of the directory where your family’s
database is installed.

A description of each field in the entry follows:

Action The name of the TeamConnection action that causes the user exit to start. You
must type the name exactly as it appears in the database. See the list of
actions in “Appendix F. Worksheets” on page 251 for the correct spelling and
capitalization. For a list of actions that support user exits, see the User Exits
page of the Settings notebook for your family.

ExitID Identifies when the user exit program is started during the course of the
TeamConnection action. Valid values are 0, 1, 2, and 3. The value indicates
that the user exit program does one of the following:

0 Starts at the beginning of the TeamConnection action, before any
initialization or access checking takes place.

1 Starts after all TeamConnection checks are made and
TeamConnection is ready to process the command.

2 Starts after the TeamConnection action is completed. At this point, the
action has been submitted to TeamConnection, and all database or
library updates have been committed.

3 Starts when a previous user exit with an exit ID of 0 or 1 is not
successful, or when the TeamConnection action is not successful.
This exit ID allows the user exit program to clean up what the other
user exit programs started.

UEprogram
The name of the user exit program. The program must exist in a directory
defined in the PATH statement of your config.sys file (for OS/2 or Windows
platforms).

UEparameter
A variable-length list of character string parameters provided to the user exit
program.

ENV=()
The customized parameter list for the user exit. See “Creating customized
parameter lists” on page 180 for more information on passing a customized
parameter list to a user exit program.

#Comments
A comment about the user exit program. This field is optional.

TeamConnection does not recognize the updates to the userExit file until you stop and
restart the TeamConnection server.

Appendix A. Family administration commands 179

Creating customized parameter lists

To create a customized parameter list for a user exit program, include the ENV=() field
in the definition for the user exit in the userExit file. The ENV=() field consists of a
comma-separated list of the parameters or configurable fields to be passed to the user
exit program. To pass the component and release parameters of a PartAdd action to a
user exit, for example, include the ENV=() field as follows:

ENV=(component,release)

See “Appendix C. User exit parameters” on page 191 for a list of parameters that can
be passed to a user exit program for each action’s exit IDs.

To include a configurable field in a customized parameter list, identify it by its attribute
name.

Rebinding the family database

After doing certain administrative tasks with the family database, such as installing
patches for TeamConnection or for DB2 and after performing the DB2 action of
REORG, it will be necessary to rebind the DB2 plans to the family database in order to
resynchronize the consistency token and avoid a runtime error SQL -818. You can
rebind the DB2 plans to the family database by issuing the following command:

fhcirt $TC_HOME/nls/cfg/*.bnd

180 Administrator’s Guide

Appendix B. Configurable field types

This appendix describes the configurable field types shipped with TeamConnection. It
also contains information that may help you determine how options that define
configurable field types and configurable fields in the TeamConnection GUI, command
line interface, and SQL interface correspond.

Configurable field types

The following tables show the configuration table values under the following column
headings:

Field type
Configuration field types that are supported by TeamConnection.

Value Values for the various configuration field types that are shipped with
TeamConnection.

Note: Your TeamConnection family administrator can add names for each
configuration field type.

Description
A description of each value shipped with TeamConnection.

Note: Your TeamConnection family administrator can add descriptions for
fields.

There are no default values specified for most of the field types that IBM ships.
However, your TeamConnection family administrator can set defaults for your family. For
information on setting defaults, see “Defining configurable field types” on page 85.

Priority levels for defects and features

Field Type Value Description

priority mustfix Defect or feature must be resolved in this
release

priority candidate Defect or feature is a candidate if time permits

priority deferred Defect or feature deferred to next release

priority easy Defect or feature is easy to solve or implement

priority moderate Defect or feature is moderately difficult to
resolve

priority difficult Defect or feature is difficult to solve or
implement

priority n/a Priority does not apply to this defect or feature

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 181

The type of driver

Field Type Value Description

drivertype development Development driver

drivertype production Production driver

drivertype integration Integration driver

drivertype prototype Prototype driver

drivertype other Other type of driver

The severity of the problem that a defect was opened to resolve

Field Type Value Description

severity 1 Wrong results or failure; critical to program
execution

severity 2 Wrong results; not critical to program execution

severity 3 Unexpected behavior

severity 4 Suggestion or enhancement request

The type of defect or feature

Field Type Value Description

defectPrefix c Defect reported by a customer

defectPrefix d Defect reported by internal users

featurePrefix s Suggestion made by customer

featurePrefix f Feature requested by internal users

The symptom of the problem a defect was opened to resolve

Field Type Value Description

symptom incorrect_i/o Incorrect or unexpected input or output

symptom program_defect Program defect

symptom design_wrong Original design is incorrect; redesign required

symptom function_needed Additional function is required

symptom plans_incorrect Plans need to be changed or enhanced

symptom docs_incorrect Documentation is incorrect

symptom prog_suspended Program suspended during normal operation

symptom core_dump Core dump occurred during normal operation

symptom lost_data Data loss occurred during normal operation

symptom usability Program or application is not usable as is

symptom test_failed Test failed

symptom build_failed Build, compile, or module integration failed

182 Administrator’s Guide

Field Type Value Description

symptom install_failed Installation failed

symptom obsolete_code Remove obsolete code

symptom intgr_problem Integration problems with other applications

symptom performance Performance problems; code needs to be
optimized

symptom reliability Reliability problems; code needs more work

symptom non-standard Coding practices or program execution is
non-standard

symptom not_to_spec Program or application does not function as
specified

The development phase in progress when a defect was found or injected

Field Type Value Description

phase design Design Phase

phase planning Planning Phase

phase strategy Strategic Planning Phase

phase prototyping Prototyping Phase

phase development Development Phase

phase documenting Documentation or Publication Phase

phase inspections Inspection Phase

phase maintenance Maintenance Phase

phase building Building, Compiling or Module Integration
Phase

phase unit_test Unit Test

phase functional_test Functional Test

phase regression_test Regression Test

phase install_test Installation Test

phase config_test Configuration Test

phase integrate_test Integration Test

phase quality_test Quality Assurance Test

phase usability_test Usability Test

phase ship_test Ship Test

phase beta_test Beta Test

phase n/a Not applicable to any particular phase

The reason a defect or feature is being accepted

Field Type Value Description

answerAccept program_defect The problem was due to a program error

Appendix B. Configurable field types 183

Field Type Value Description

answerAccept docs_defect Documentation needs to be changed

answerAccept docs_change Documentation needs to address new features

answerAccept plans_change Plans or schedules need to be changed

answerAccept new_function New function will be added

answerAccept redesign Current function needs to be redesigned

answerAccept fix_testcase Testcase needs to be fixed

answerAccept remove_code Obsolete code needs to be removed

answerAccept remove_support Nonsupported functions need to be removed

answerAccept comply_with Coding practices and operation needs to
comply with standards

The reason a defect or feature is being returned

Field Type Value Description

answerReturn fixed The problem is already fixed

answerReturn future Future releases or versions will address the
defect or feature

answerReturn duplicate This is a duplicate of an existing defect or
feature

answerReturn usage_error The problem is caused by incorrect usage

answerReturn hardware_error The problem is caused by a hardware error

answerReturn info_needed More information is required

answerReturn limitation This problem is a current limitation

answerReturn suggestion This problem is a suggestion, not an error

answerReturn unrecreatable The problem cannot be re-created

answerReturn as_designed The program works as designed

answerReturn deviation Code or documentation will deviate from the
standards

The relationship of a part to the translation process

Field Type Value Description

translation no Part is not involved in translation

translation yes Part is translated into other languages

translation related Part is not translated but is related to
translation process

Reasons for returning a feature

Field Type Value Description

featureReturn fixed The feature is already implemented

184 Administrator’s Guide

Field Type Value Description

featureReturn future Future releases or versions will address the
feature

featureReturn duplicate This is a duplicate of an existing feature

featureReturn info_needed More information is required

featureReturn deviation Code or documentation will deviate from the
standards

featureReturn null Null

Reasons for accepting a feature

Field Type Value Description

featureAccept docs_change Documentation needs to address new features

featureAccept new_function New function will be added

featureAccept redesign Current function needs to be redesigned

featureAccept null Null

Fields for specifying expressions

Field Type Value Description

serial |NULL$ Null value

serial |[0-9]\{6\}$ Six-numeral serial number

Phone numbers

Field Type Value Description

phone |NULL$ Null value

phone |TL-[0-9]\{3\}-[0-9]\{4\}$ Phone format TL-PPP-NNNN, P and N are
numerals

A list from which more than one item can be selected

Field Type Value Description

list item1 Item to be selected from a list

list item2 Item to be selected from a list

list item3 Item to be selected from a list

list item4 Item to be selected from a list

list item5 Item to be selected from a list

Field for noting code development iterations

Field Type Value Description

iteration base_code Base Code/Prior Release

Appendix B. Configurable field types 185

Field Type Value Description

iteration 01 First iteration

iteration 02 Second iteration

iteration 03 Third iteration

iteration 04 Fourth iteration

iteration 05 Fifth iteration

iteration 06 Sixth iteration

iteration 07 Seventh iteration

iteration 08 Eighth iteration

iteration 09 Ninth iteration

iteration 10 Tenth iteration

iteration 11 Eleventh iteration

iteration 12 Twelfth iteration

iteration 13 Thirteenth iteration

iteration 14 Fourteenth iteration

iteration 15 Fifteenth iteration

Describes the activity in progress when a defect was discovered

Field Type Value Description

activityODC review Review or inspection

activityODC ut/ft Unit Test or Functional Test

activityODC st System Test

activityODC id Information Development

activityODC customer Customer use

Identify specific intents or purposes for which an activity that triggered a defect
was being performed

Field Type Value Description

triggerODC design Design Nonconformance

triggerODC flow Understanding Flow

triggerODC backward Backward Compatibility

triggerODC lateral Lateral Compatibility

triggerODC concurrency Concurrency

triggerODC document Internal Document Consistency/Completeness

triggerODC language Language Dependencies

triggerODC side Side Effects

triggerODC rare Rare Situation

triggerODC simple Simple Path

186 Administrator’s Guide

Field Type Value Description

triggerODC complex Complex Path

triggerODC coverage Test Coverage

triggerODC variation Test Variation

triggerODC sequencing Test Sequencing

triggerODC interaction Test Interaction

triggerODC workload Workload Volume/Stress

triggerODC recover Recovery/Exception

triggerODC startup Startup/Restart

triggerODC hw Hardware Configuration

triggerODC sw Software Configuration

triggerODC normal Normal Mode

triggerODC accuracy The information does not describe the product
correctly

triggerODC clarity The information is confusing or difficult to
understand

triggerODC completeness Necessary information is missing

triggerODC organization The relationship between parts or between a
part and the whole is not conveyed

triggerODC retrievability The information is difficult to find

triggerODC style The manner of expression is inappropriate or
difficult to understand

triggerODC task The presentation of why and how to perform a
task is inappropriate

triggerODC aesthetics The appearance and layout of the information
is inappropriate

The impact a defect might have on customers if not fixed

Field Type Value Description

impactODC installability The ability of the customer to prepare and
place the software in position for use

impactODC security The protection of systems, programs, and data
from inadvertent or malicious destruction,
alteration, or disclosure

impactODC performance The speed of the software as perceived by the
customer and the customer’s end users, in
terms of their ability to perform their tasks

impactODC maintenance The ease of applying preventive or corrective
fixes to the software

impactODC serviceability The ability to diagnose failures easily and
quickly, with minimal impact to the customer

Appendix B. Configurable field types 187

Field Type Value Description

impactODC migration The ease of upgrading to a current release

impactODC documentation The degree to which the publication aids
provided for understanding the structure and
intended uses of the software are correct and
complete

impactODC usability The degree to which the software and
publication aids enable the product to be easily
understood and conveniently employed by its
end user

impactODC standards The degree to which the software complies with
established pertinent standards

impactODC reliability The ability of the software to consistently
perform its intended function without unplanned
interruption

impactODC requirements A customer expectation, with regard to
capability, which was not known, understood, or
prioritized as a requirement for the current
product or release

impactODC capability The ability of the software to perform its
intended functions, and satisfy known
requirements

The aspect of the product that a defect is intended to address

Field Type Value Description

targetODC requirements Customer, market, or technical requirements

targetODC design Product design

targetODC code Product code

targetODC build Problems encountered during the driver build
process, in library systems, or with
management of change or version control

targetODC information Information/User Documentation

targetODC ui User Interface

targetODC nls National Language Support

Represents the actual correction that was made

Field Type Value Description

defTypeODC assignment Value(s) assigned incorrectly or not assigned at
all

defTypeODC checking Errors caused by missing or incorrect validation
of parameters or data in conditional statements

188 Administrator’s Guide

Field Type Value Description

defTypeODC algorithm Efficiency or correctness problems that affect
the task and can be fixed by (re)implementing
an algorithm or local data structure without the
need for requesting a design change

defTypeODC function The error should require a formal design
change

defTypeODC timing Necessary serialization of shared resource was
missing

defTypeODC interface Communication problem between product
components

defTypeODC relationship Problems related to associations among
procedures, data structures and objects

defTypeODC editorial Defects relates to grammar, spelling,
punctuation, organization, etc.

defTypeODC technical Defects related to the description of a product
and its interfaces

defTypeODC navigational Defects that prevent users from finding needed
information about a product

defTypeODC GUI Graphical User Interface

defTypeODC cmdline Command Line Interface

defTypeODC panels Panels

defTypeODC na Not Available

Indication of whether the defect was an omission, a commission, or extraneous

Field Type Value Description

qualifierODC missing The defect was to due to an error of omission

qualifierODC incorrect The defect was to due to an error of
commission

qualifierODC extraneous The defect was to due to something not
relevant or pertinent to the document or code

The source of the code or information that was fixed

Field Type Value Description

sourceODC here A defect is in code which was developed in
house

sourceODC reused A defect is encountered using a part of a
standard reuse library

sourceODC outsourced A defect is in a part provided by a vendor

sourceODC reference Defect contained in detailed descriptive
information

sourceODC tasks Defect contained in guidance information

Appendix B. Configurable field types 189

Field Type Value Description

sourceODC presentation Defect contained in graphical and other
elements used to present the information

sourceODC concepts Defect contained in high level overview and
conceptual information

sourceODC examples Examples

sourceODC na Not available or not applicable

The history of the code or information that was fixed

Field Type Value Description

srcHistoryODC base The defect is in part of the product which has
not been modified by the current project and is
not part of a standard reuse library

srcHistoryODC new The defect is in a function which was created
by and for the current project and which
introduces new function

srcHistoryODC rewritten The defect was introduced as a direct result of
redesign and/or rewrite of old function in an
attempt to improve its design or quality

srcHistoryODC refixed The defect was introduced by the solution
provided to fix a previous defect

190 Administrator’s Guide

Appendix C. User exit parameters

The following table shows the parameters passed to each user exit program defined for
a specific TeamConnection action and ExitID. A description of the parameters follows
the table on page 212.

Note: Parameters are not shown for exit ID 3. The parameters for exit ID 3 are the
same as those passed to exit ID 0, with an additional parameter at the end to
indicate the last user exit ID that has been executed successfully, for example, 0
or 1.The msgBuff parameter will always be null for exit ID 0, but will probably not
be null for exit ID 3.

A parameter name followed by not used indicates that TeamConnection passes an
empty string.

See “Chapter 9. Providing user exits” on page 103 for more information on user exits.

Parameters passed to user exit programs

The figure that follows shows the parameters passed to each user exit program defined
for a specific TeamConnection action and exit ID.

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

Access

AccessCreate 0 NewOwner, component, authority, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 NewOwner, component, authority, effectiveUserID, VerboseFlag

2 NewOwner, component, authority, effectiveUserID, VerboseFlag

AccessDelete 0 OldOwner, component, authority, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 OldOwner, component, authority, effectiveUserID, VerboseFlag

2 OldOwner, component, authority, effectiveUserID, VerboseFlag

AccessRestrict 0 NewOwner, component, authority, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 NewOwner, component, authority, effectiveUserID, VerboseFlag

2 NewOwner, component, authority, effectiveUserID, VerboseFlag

ApprovalAbstain 0 release, WorkAreaName, ApproverName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, ApproverName, workareaType,
effectiveUserID, VerboseFlag

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 191

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

2 release, WorkAreaName, DefectOrFeatureName, ApproverName, workareaType,
effectiveUserID, VerboseFlag

ApprovalAccept 0 release, WorkAreaName, ApproverName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, ApproverName, workareaType,
effectiveUserID, VerboseFlag

2 release, WorkAreaName, DefectOrFeatureName, ApproverName, workareaType,
effectiveUserID, VerboseFlag

ApprovalAssign 0 release, WorkAreaName, OldOwner, NewOwner, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, OldOwner, NewOwner,
workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, DefectOrFeatureName, OldOwner, NewOwner,
workareaType, effectiveUserID, VerboseFlag

ApprovalCreate 0 release, WorkAreaName, ApproverName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, ApproverName, workareaType,
effectiveUserID, VerboseFlag

2 release, WorkAreaName, DefectOrFeatureName, ApproverName, workareaType,
effectiveUserID, VerboseFlag

ApprovalDelete 0 release, WorkAreaName, ApproverName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, ApproverName, workareaType,
effectiveUserID, VerboseFlag

2 release, WorkAreaName, DefectOrFeatureName, ApproverName, workareaType,
effectiveUserID, VerboseFlag

ApprovalReject 0 release, WorkAreaName, ApproverName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, ApproverName, workareaType,
effectiveUserID, VerboseFlag

2 release, WorkAreaName, DefectOrFeatureName, ApproverName, workareaType,
effectiveUserID, VerboseFlag

ApproverCreate 0 NewOwner, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 NewOwner, release, effectiveUserID, VerboseFlag

2 NewOwner, release, effectiveUserID, VerboseFlag

ApproverDelete 0 OldOwner, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 OldOwner, release, effectiveUserID, VerboseFlag

2 OldOwner, release, effectiveUserID, VerboseFlag

BecomeCreate 0 login, becomeLogin, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 login, becomeLogin, effectiveUserID, VerboseFlag

192 Administrator’s Guide

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

2 login, becomeLogin, effectiveUserID, VerboseFlag

BecomeDelete 0 login, becomeLogin, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 login, becomeLogin, effectiveUserID, VerboseFlag

2 login, becomeLogin, effectiveUserID, VerboseFlag

BuilderCreate 0 name, transmitFlag, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 name, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions, effectiveUserID,
VerboseFlag

2 name, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions, effectiveUserID,
VerboseFlag

BuilderDelete 0 name, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 name, release, effectiveUserID, VerboseFlag

2 name, release, effectiveUserID, VerboseFlag

BuilderExtract 0 name, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 name, release, effectiveUserID, VerboseFlag

2 name, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions, effectiveUserID,
VerboseFlag

BuilderModify 0 name, transmitFlag, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 name, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions, effectiveUserID,
VerboseFlag

2 name, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions, effectiveUserID,
VerboseFlag

BuilderView 0 name, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 name, release, effectiveUserID, VerboseFlag

2 name, release, effectiveUserID, VerboseFlag

CollisionAccept 0 pathName, WorkAreaName, release, state, alternateversion, workareaType,
typename, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 pathName, WorkAreaName, release, typename, effectiveUserID, VerboseFlag

2 pathName, WorkAreaName, release, typename, effectiveUserID, VerboseFlag

CollisionReconc 0 pathName, WorkAreaName, release, state, alternateversion, workareaType,
typename, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

Appendix C. User exit parameters 193

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

1 pathName, WorkAreaName, release, typename, effectiveUserID, VerboseFlag

2 pathName, WorkAreaName, release, typename, effectiveUserID, VerboseFlag

CollisionReject 0 pathName, WorkAreaName, release, state, alternateversion, workareaType,
typename, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 pathName, WorkAreaName, release, typename, effectiveUserID, VerboseFlag

2 pathName, WorkAreaName, release, typename, effectiveUserID, VerboseFlag

CompCreate 0 component, parentcomponent, owner, componentprocess, description,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 newcomponent, parentcomponent, owner, newcomponentprocess, description,
effectiveUserID, VerboseFlag

2 newcomponent, parentcomponent, owner, newcomponentprocess, description,
effectiveUserID, VerboseFlag

CompDelete 0 component, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 component, effectiveUserID, VerboseFlag

2 component, effectiveUserID, VerboseFlag

CompLink 0 component, parentcomponent, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 component, parentcomponent, effectiveUserID, VerboseFlag

2 component, parentcomponent, effectiveUserID, VerboseFlag

CompModify 0 component, newcomponent, NewOwner, newdescription, newcomponentprocess,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 component, newcomponent, OldOwner, NewOwner, olddescription, newdescription,
oldcomponentprocess, newcomponentprocess, dateoflastupdate, effectiveUserID,
VerboseFlag

2 name, newcomponent, NewOwner, description, process, effectiveUserID,
VerboseFlag

CompRecreate 0 component, parentcomponent, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 component, parentcomponent, olddropDate, effectiveUserID, VerboseFlag

2 component, parentcomponent, olddropDate, effectiveUserID, VerboseFlag

CompUnlink 0 component, parentcomponent, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 component, parentcomponent, effectiveUserID, VerboseFlag

2 component, parentcomponent, effectiveUserID, VerboseFlag

CompView 0 component, displaytype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 component, displaytype, effectiveUserID, VerboseFlag

2 component, displaytype, effectiveUserID, VerboseFlag

194 Administrator’s Guide

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

CoreqCreate 0 release, primeworkareaname, secondworkareaname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

2 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

CoreqDelete 0 release, WorkAreaName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, workareaType, effectiveUserID, VerboseFlag

DefectAccept 0 defectname, originaldefectname, answer, remarks, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 defectname, answer, remarks, configFields, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID, VerboseFlag

DefectAssign 0 defectname, newcomponent, NewOwner, remarks, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 defectname, newcomponent, NewOwner, remarks, effectiveUserID, VerboseFlag

2 defectname, newcomponent, NewOwner, remarks, effectiveUserID, VerboseFlag

DefectCancel 0 defectname, originaldefectname, answer, remarks, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID, VerboseFlag

DefectComment 0 defectname, remarks, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, remarks, effectiveUserID, VerboseFlag

DefectDesign 0 defectname, originaldefectname, answer, remarks, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID, VerboseFlag

DefectModify 0 defectname, newdefectname, severity, environmentname, prefix, reference,
drivername, abstract, originator, answer, remarks, release, configFields,
MessageBuffer, notesDB, notesID, effectiveUserID, TeamcUserID, VerboseFlag

1 defectname, newdefectname, severity, environmentname, prefix, reference,
drivername, abstract, originator, answer, remarks, release, configFields,
dateoflastupdate, notesDB, notesID, effectiveUserID, VerboseFlag

2 defectname, newdefectname, severity, environmentname, prefix, reference,
drivername, abstract, originator, answer, remarks, release, configFields, notesDB,
notesID, effectiveUserID, VerboseFlag

Appendix C. User exit parameters 195

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

DefectOpen 0 component, prefix, severity, reference, environmentname, remarks, drivername,
abstract, release, configFields, defectname, MessageBuffer, notesDB, notesID,
effectiveUserID, TeamcUserID, VerboseFlag

1 component, prefix, severity, reference, environmentname, remarks, drivername,
abstract, release, configFields, defectname, effectiveuserarea, notesDB, notesID,
effectiveUserID, VerboseFlag

2 component, prefix, severity, reference, environmentname, remarks, drivername,
abstract, release, configFields, defectname, effectiveuserarea, notesDB, notesID,
effectiveUserID, VerboseFlag

DefectReopen 0 defectname, originaldefectname, answer, remarks, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID, VerboseFlag

DefectReturn 0 defectname, originaldefectname, answer, remarks, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 defectname, originaldefectname, answer, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID, VerboseFlag

DefectReview 0 defectname, originaldefectname, answer, remarks, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID, VerboseFlag

DefectSize 0 defectname, originaldefectname, answer, remarks, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID, VerboseFlag

DefectVerify 0 defectname, originaldefectname, answer, remarks, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID, VerboseFlag

DefectView 0 defectname, displaytype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 defectname, displaytype, effectiveUserID, VerboseFlag

2 defectname, displaytype, effectiveUserID, VerboseFlag

DriverAssign 0 drivername, release, NewOwner, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 drivername, release, NewOwner, driverstate, drivertype, effectiveUserID,
VerboseFlag

2 drivername, release, NewOwner, driverstate, drivertype, effectiveUserID,
VerboseFlag

196 Administrator’s Guide

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

DriverCheck 0 drivername, release, longFlag, basename, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 drivername, release, longFlag, driverstate, drivertype, basename, effectiveUserID,
VerboseFlag

2 drivername, release, longFlag, driverstate, drivertype, basename, effectiveUserID,
VerboseFlag

DriverCommit 0 drivername, release, forceFlag, ignoreFlag, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 drivername, release, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, drivertype, effectiveUserID, VerboseFlag

DriverComplete 0 drivername, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, release, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, drivertype, effectiveUserID, VerboseFlag

DriverCreate 0 drivername, release, drivertype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 drivername, release, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, drivertype, effectiveUserID, VerboseFlag

DriverDelete 0 drivername, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

DriverExtract 0 drivername, release, root, nokeysFlag, ExtractType, fmask, dmask, crlfFlag,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, release, root, nokeysFlag, ExtractType, fmask, dmask, crlfFlag,
driverstate, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, root, nokeysFlag, ExtractType, fmask, dmask, crlfFlag,
driverstate, drivertype, effectiveUserID, VerboseFlag

DriverFreeze 0 drivername, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

DriverModify 0 drivername, newdrivername, release, newdrivertype, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, newdrivername, release, oldtype, newtype, driverstate,
dateoflastupdate, effectiveUserID, VerboseFlag

2 drivername, newdrivername, release, oldtype, newtype, driverstate, effectiveUserID,
VerboseFlag

DriverRefresh 0 drivername, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

Appendix C. User exit parameters 197

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

DriverRestrict 0 drivername, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, release, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, drivertype, effectiveUserID, VerboseFlag

DriverView 0 drivername, release, displaytype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 drivername, release, displaytype, driverstate, drivertype, effectiveUserID,
VerboseFlag

2 drivername, release, displaytype, driverstate, drivertype, effectiveUserID,
VerboseFlag

MemberCreate 0 drivername, release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 drivername, release, WorkAreaName, DefectOrFeatureName, workareastate,
workareaType, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, WorkAreaName, DefectOrFeatureName, workareastate,
workareaType, drivertype, effectiveUserID, VerboseFlag

MemberDelete 0 drivername, release, numberofworkareas, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 drivername, release, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, drivertype, effectiveUserID, VerboseFlag

EnvCreate 0 environmentname, release, testersname, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 environmentname, release, testersname, effectiveUserID, VerboseFlag

2 environmentname, release, testersname, effectiveUserID, VerboseFlag

EnvDelete 0 environmentname, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 environmentname, release, effectiveUserID, VerboseFlag

2 environmentname, release, effectiveUserID, VerboseFlag

EnvModify 0 environmentname, release, newtestersname, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 environmentname, release, newtestersname, effectiveUserID, VerboseFlag

2 environmentname, release, newtestersname, effectiveUserID, VerboseFlag

FeatureAccept 0 featurename, originalfeaturename, answer, remarks, StandardFields, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, configFields, answer, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID, VerboseFlag

FeatureAssign 0 featurename, newcomponent, NewOwner, remarks, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 featurename, newcomponent, NewOwner, remarks, effectiveUserID, VerboseFlag

198 Administrator’s Guide

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

2 featurename, newcomponent, NewOwner, remarks, effectiveUserID, VerboseFlag

FeatureCancel 0 featurename, originalfeaturename, answer, remarks, StandardFields, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID, VerboseFlag

FeatureComment 0 featurename, remarks, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, remarks, effectiveUserID, VerboseFlag

FeatureDesign 0 featurename, originalfeaturename, answer, remarks, StandardFields, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID, VerboseFlag

FeatureModify 0 featurename, newfeaturename, prefix, reference, abstract, originator, remarks,
configFields, MessageBuffer, answer, release, notesDB, notesID, effectiveUserID,
TeamcUserID, VerboseFlag

1 featurename, newfeaturename, prefix, reference, abstract, originator, remarks,
configFields, dateoflastupdate, answer, release, notesDB, notesID, effectiveUserID,
VerboseFlag

2 featurename, newfeaturename, prefix, reference, abstract, originator, remarks,
configFields, answer, release, notesDB, notesID, effectiveUserID, VerboseFlag

FeatureOpen 0 component, prefix, reference, remarks, abstract, configFields, featurename,
MessageBuffer, release, notesDB, notesID, effectiveUserID, TeamcUserID,
VerboseFlag

1 component, prefix, reference, remarks, abstract, configFields, featurename, release,
notesDB, notesID, effectiveUserID, VerboseFlag

2 component, prefix, reference, remarks, abstract, configFields, featurename, release,
notesDB, notesID, effectiveUserID, VerboseFlag

FeatureReopen 0 featurename, originalfeaturename, answer, remarks, StandardFields, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID, VerboseFlag

FeatureReturn 0 featurename, originalfeaturename, answer, remarks, StandardFields, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, originalfeaturename, remarks, answer, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID, VerboseFlag

FeatureReview 0 featurename, originalfeaturename, answer, remarks, StandardFields, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

Appendix C. User exit parameters 199

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

2 featurename, originalfeaturename, remarks, answer, effectiveUserID, VerboseFlag

FeatureSize 0 featurename, originalfeaturename, answer, remarks, StandardFields, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID, VerboseFlag

FeatureVerify 0 featurename, originalfeaturename, answer, remarks, StandardFields, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID, VerboseFlag

FeatureView 0 featurename, displaytype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 featurename, displaytype, effectiveUserID, VerboseFlag

2 featurename, displaytype, effectiveUserID, VerboseFlag

FixActive 0 WorkAreaName, release, component, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, release, component, type, effectiveUserID,
VerboseFlag

2 WorkAreaName, DefectOrFeatureName, release, component, type, effectiveUserID,
VerboseFlag

FixAssign 0 WorkAreaName, release, component, NewOwner, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, component, NewOwner, type, effectiveUserID,
VerboseFlag

2 WorkAreaName, release, component, NewOwner, type, effectiveUserID,
VerboseFlag

FixComplete 0 WorkAreaName, release, component, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, release, component, type, effectiveUserID,
VerboseFlag

2 WorkAreaName, DefectOrFeatureName, release, component, type, effectiveUserID,
VerboseFlag

FixCreate 0 WorkAreaName, release, component, NewOwner, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, release, component, NewOwner, type,
effectiveUserID, VerboseFlag

2 WorkAreaName, DefectOrFeatureName, release, component, NewOwner, type,
effectiveUserID, VerboseFlag

FixDelete 0 WorkAreaName, release, component, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

200 Administrator’s Guide

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

1 WorkAreaName, release, component, type, effectiveUserID, VerboseFlag

2 WorkAreaName, release, component, type, effectiveUserID, VerboseFlag

HostCreate 0 NewOwner, login@hostname, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 NewOwner, login@hostname, effectiveUserID, VerboseFlag

2 NewOwner, login@hostname, effectiveUserID, VerboseFlag

HostDelete 0 OldOwner, login@hostname, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 OldOwner, login@hostname, effectiveUserID, VerboseFlag

2 OldOwner, login@hostname, effectiveUserID, VerboseFlag

NotifyCreate 0 NewOwner, component, interestgroupname, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 NewOwner, component, interestgroupname, effectiveUserID, VerboseFlag

2 NewOwner, component, interestgroupname, effectiveUserID, VerboseFlag

NotifyDelete 0 OldOwner, component, interestgroupname, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 OldOwner, component, interestgroupname, effectiveUserID, VerboseFlag

2 OldOwner, component, interestgroupname, effectiveUserID, VerboseFlag

ParserCreate 0 description, release, parsercommand, paths, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 description, release, parsercommand, paths, effectiveUserID, VerboseFlag

2 description, release, parsercommand, paths, effectiveUserID, VerboseFlag

ParserDelete 0 description, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 description, release, effectiveUserID, VerboseFlag

2 description, release, effectiveUserID, VerboseFlag

ParserModify 0 description, release, parsercommand, paths, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 description, release, parsercommand, paths, effectiveUserID, VerboseFlag

2 description, release, parsercommand, paths, effectiveUserID, VerboseFlag

ParserView 0 description, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 description, release, effectiveUserID, VerboseFlag

2 description, release, effectiveUserID, VerboseFlag

Appendix C. User exit parameters 201

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

PartAdd 0 partpathName, transmitFlag, filenameonclient, temporaryfileonserver, release,
component, filetype, WorkAreaName, fMode, parentname, parsername,
buildername, relationtoparent, buildparameters, parttype, parenttype, temporaryFlag,
StandardFields, configFields, translation, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 partpathName, temporaryfileonserver, release, component, filetype, WorkAreaName,
remarks, fMode, parentname, parsername, buildername, relationtoparent,
buildparameters, parttype, parenttype, temporaryFlag, configFields, translation,
effectiveUserID, VerboseFlag

2 partpathName, temporaryfileonserver, release, component, filetype, WorkAreaName,
remarks, fMode, parentname, parsername, buildername, relationtoparent,
buildparameters, parttype, parenttype, temporaryFlag, configFields, translation,
effectiveUserID, VerboseFlag

PartBuild 0 partpathName, release, WorkAreaName, buildmode, poolname, buildparameters,
cancelFlag, detailfilename, clientportname, parttype, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 partpathName, WorkAreaName, release, component, buildmode, poolname,
buildparameters, cancelFlag, detailfilename, clienthostname, clientportname,
parttype, effectiveUserID, VerboseFlag

2 partpathName, WorkAreaName, release, component, buildmode, poolname,
buildparameters, cancelFlag, detailfilename, clienthostname, clientportname,
parttype, effectiveUserID, VerboseFlag

PartCheckIn 0 partpathName, transmitFlag, filenameonclient, temporaryfileonserver, release,
forceFlag, WorkAreaName, commonFlag, filetype, parttype, retainlockFlag,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, temporaryfileonserver, release, component, forceFlag,
WorkAreaName, remarks, commonreleases, filetype, parttype, retainlockFlag,
configFields, effectiveUserID, VerboseFlag

2 partpathName, temporaryfileonserver, release, component, versionname, forceFlag,
WorkAreaName, remarks, commonreleases, filetype, parttype, retainlockFlag,
configFields, effectiveUserID, VerboseFlag

PartCheckOut 0 partpathName, temporaryfileonserver, release, forceFlag, WorkAreaName, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, temporaryfileonserver, release, filetype, component, versionname,
forceFlag, workareaname, parttype, configFields, effectiveUserID, VerboseFlag

2 partpathName, temporaryfileonserver, release, filetype, component, versionname,
forceFlag, workareaname, parttype, configFields, effectiveUserID, VerboseFlag

PartChildInfo 0 partpathName, release, versionname, WorkAreaName, displaytype, relationtoparent,
parttype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, versionname, WorkAreaName, displaytype, relationtoparent,
parttype, effectiveUserID, VerboseFlag

2 partpathName, release, versionname, WorkAreaName, displaytype, relationtoparent,
parttype, effectiveUserID, VerboseFlag

202 Administrator’s Guide

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

PartConnect 0 partpathName, release, WorkAreaName, parentname, relationtoparent, parttype,
parenttype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, WorkAreaName, component, parentname, relationtoparent,
parttype, parenttype, effectiveUserID, VerboseFlag

2 partpathName, release, WorkAreaName, component, parentname, relationtoparent,
parttype, parenttype, effectiveUserID, VerboseFlag

PartDelete 0 partpathName, release, forceFlag, WorkAreaName, commonFlag, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, forceFlag, WorkAreaName, commonFlag, component,
parttype, commonRelBuffer, effectiveUserID, VerboseFlag

2 partpathName, release, forceFlag, WorkAreaName, commonFlag, component,
parttype, commonRelBuffer, effectiveUserID, VerboseFlag

PartDisconnect 0 partpathName, release, WorkAreaName, parentname, parttype, parenttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, WorkAreaName, component, parentname, parttype,
parenttype, effectiveUserID, VerboseFlag

2 partpathName, release, WorkAreaName, component, parentname, parttype,
parenttype, effectiveUserID, VerboseFlag

PartExtract 0 partpathName, temporaryfileonserver, release, nokeysFlag, WorkAreaName,
versionname, parttype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, temporaryfileonserver, release, nokeysFlag, WorkAreaName,
versionname, component, parttype, configFields, effectiveUserID, VerboseFlag

2 partpathName, temporaryfileonserver, release, nokeysFlag, WorkAreaName,
versionname, component, parttype, configFields, effectiveUserID, VerboseFlag

PartLink 0 partpathName, sourcerelease, release, sourceworkareaname, sourceversion,
parttype, targetworkareaname, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 partpathName, sourceworkareaname, sourcerelease, targetrelease, sourceversion,
component, parttype, targetworkareaname, effectiveUserID, VerboseFlag

2 partpathName, sourceworkareaname, sourcerelease, targetrelease, sourceversion,
component, parttype, targetworkareaname, effectiveUserID, VerboseFlag

PartLock 0 partpathName, temporaryfileonserver, release, forceFlag, WorkAreaName, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, forceFlag, WorkAreaName, filetype, component,
versionname, parttype, configFields, effectiveUserID, VerboseFlag

2 partpathName, release, forceFlag, WorkAreaName, filetype, component,
versionname, parttype, configFields, effectiveUserID, VerboseFlag

PartMark 0 partpathName, release, versionname, WorkAreaName, translationstate, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, versionname, WorkAreaName, translationstate, component,
parttype, configFields, effectiveUserID, VerboseFlag

Appendix C. User exit parameters 203

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

2 partpathName, release, versionname, WorkAreaName, translationstate, component,
parttype, configFields, effectiveUserID, VerboseFlag

PartMerge 0 partpathName, release, WorkAreaName, FromRelease, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, WorkAreaName, FromRelease, effectiveUserID,
VerboseFlag

2 partpathName, release, WorkAreaName, FromRelease, effectiveUserID,
VerboseFlag

PartModify 0 partpathName, release, newcomponent, newfMode, configFields, WorkAreaName,
filetype, parsername, buildername, buildparameters, parttype, temporaryfilename,
translation, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, oldcomponent, newcomponent, oldfMode, newfMode,
configFields, WorkAreaName, dateoflastupdate, filetype, parsername, buildername,
buildparameters, parttype, temporaryFlag, translation, effectiveUserID, VerboseFlag

2 partpathName, release, oldcomponent, newcomponent, oldfMode, newfMode,
configFields, WorkAreaName, dateoflastupdate, filetype, parsername, buildername,
buildparameters, parttype, temporaryFlag, translation, effectiveUserID, VerboseFlag

PartReconcile 0 partpathName, release, WorkAreaName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 partpathName, release, WorkAreaName, effectiveUserID, VerboseFlag

2 partpathName, release, WorkAreaName, effectiveUserID, VerboseFlag

PartRecreate 0 partpathName, release, forceFlag, WorkAreaName, commonFlag, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, forceFlag, WorkAreaName, commonFlag, component,
olddropDate, parttype, commonRelBuffer, effectiveUserID, VerboseFlag

2 partpathName, release, forceFlag, WorkAreaName, commonFlag, component,
olddropDate, parttype, commonRelBuffer, effectiveUserID, VerboseFlag

PartRefresh 0 partpathName, sourcerelease, release, sourceworkareaname, sourceversion,
parttype, targetworkareaname, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 partpathName, sourceworkareaname, sourcerelease, targetrelease, sourceversion,
component, parttype, targetworkareaname, effectiveUserID, VerboseFlag

2 partpathName, sourceworkareaname, sourcerelease, targetrelease, sourceversion,
component, parttype, targetworkareaname, effectiveUserID, VerboseFlag

PartRename 0 partpathName, release, nuPartPathName, forceFlag, WorkAreaName, commonFlag,
parttype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, nuPartPathName, forceFlag, WorkAreaName, commonFlag,
component, parttype, commonRelBuffer, effectiveUserID, VerboseFlag

2 partpathName, release, nuPartPathName, forceFlag, WorkAreaName, commonFlag,
component, parttype, commonRelBuffer, effectiveUserID, VerboseFlag

PartTouch 0 partpathName, release, forceFlag, WorkAreaName, commonFlag, parttype,
creatChangeFlag, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

204 Administrator’s Guide

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

1 partpathName, release, forceFlag, WorkAreaName, commonFlag, component,
parttype, effectiveUserID, VerboseFlag

2 partpathName, release, forceFlag, WorkAreaName, commonFlag, component,
parttype, effectiveUserID, VerboseFlag

PartUndo 0 partpathName, release, forceFlag, WorkAreaName, commonFlag, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, forceFlag, WorkAreaName, commonFlag, component,
versionname, parttype, commonRelBuffer, timeNow, effectiveUserID, VerboseFlag

2 partpathName, release, forceFlag, WorkAreaName, commonFlag, component,
versionname, parttype, commonRelBuffer, timeNow, effectiveUserID, VerboseFlag

PartUnlock 0 partpathName, WorkAreaName, release, parttype, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 partpathName, WorkAreaName, release, component, parttype, configFields,
effectiveUserID, VerboseFlag

2 partpathName, WorkAreaName, release, component, parttype, configFields,
effectiveUserID, VerboseFlag

PartView 0 partpathName, release, versionname, WorkAreaName, displaytype, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, versionname, WorkAreaName, displaytype, parttype,
effectiveUserID, VerboseFlag

2 partpathName, release, versionname, WorkAreaName, displaytype, parttype,
effectiveUserID, VerboseFlag

PartViewmsg 0 partpathName, release, versionname, WorkAreaName, parttype, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, component, versionname, WorkAreaName, parttype,
effectiveUserID, VerboseFlag

2 partpathName, release, component, versionname, WorkAreaName, parttype,
effectiveUserID, VerboseFlag

PartRestrict 0 partpathName, release, cancelFlag, parttype, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 partpathName, release, cancelFlag, component, parttype, effectiveUserID,
VerboseFlag

2 partpathName, release, cancelFlag, component, parttype, effectiveUserID,
VerboseFlag

PartOverrideR 0 partpathName, release, WorkAreaName, login, cancelFlag, parttype, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, WorkAreaName, login, cancelFlag, component, parttype,
effectiveUserID, VerboseFlag

2 partpathName, release, WorkAreaName, login, cancelFlag, component, parttype,
effectiveUserID, VerboseFlag

PrereqCreate 0 release, primeworkareaname, secondworkareaname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

Appendix C. User exit parameters 205

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

1 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

2 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

PrereqDelete 0 release, primeworkareaname, secondworkareaname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

2 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

ReleaseCreate 0 release, component, newreleaseprocess, environmentname, testersname,
ApproverName, description, releaseowner, autoprune, coupling, developmentmode,
releasedatabasename, outputversions, StandardFields, configFields, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 release, component, newreleaseprocess, environmentname, testersname,
ApproverName, description, releaseowner, coupling, effectiveUserID, VerboseFlag

2 release, component, newreleaseprocess, environmentname, testersname,
ApproverName, description, releaseowner, coupling, effectiveUserID, VerboseFlag

ReleaseDelete 0 release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 release, effectiveUserID, VerboseFlag

2 release, effectiveUserID, VerboseFlag

ReleaseExtract 0 release, root, nokeysFlag, committedFlag, date, fmask, dmask, complist, crlfFlag,
versionname, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 release, root, nokeysFlag, committedFlag, date, fmask, dmask, crlfFlag, complist,
effectiveUserID, VerboseFlag

2 release, root, nokeysFlag, committedFlag, date, fmask, dmask, crlfFlag, complist,
effectiveUserID, VerboseFlag

ReleaseLink 0 release, FromRelease, WorkAreaName, newworkareaname, fromversionname,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 release, FromRelease, WorkAreaName, fromworkareaname, fromversionname,
effectiveUserID, VerboseFlag

2 release, FromRelease, WorkAreaName, fromworkareaname, fromversionname,
effectiveUserID, VerboseFlag

ReleaseMerge 0 release, WorkAreaName, FromRelease, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, FromRelease, effectiveUserID, VerboseFlag

2 release, WorkAreaName, FromRelease, effectiveUserID, VerboseFlag

ReleaseModify 0 release, newrelease, component, description, newreleaseprocess,
environmentname, testersname, ApproverName, NewOwner, autoprune, coupling,
outputversions, StandardFields, configFields, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

206 Administrator’s Guide

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

1 release, newrelease, oldcomponent, newcomponent, olddescription, newdescription,
oldreleaseprocess, newreleaseprocess, environmentname, testersname,
ApproverName, OldOwnerName, NewOwner, dateoflastupdate, coupling,
effectiveUserID, VerboseFlag

2 release, newrelease, component, description, newreleaseprocess,
environmentname, testersname, ApproverName, NewOwner, coupling,
effectiveUserID, VerboseFlag

ReleasePrune 0 release, versionname, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 release, versionname, effectiveUserID, VerboseFlag

2 release, versionname, effectiveUserID, VerboseFlag

ReleaseRecreate 0 release, environmentname, testersname, ApproverName, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 release, lastdropdate, environment, testersname, ApproverName, effectiveUserID,
VerboseFlag

2 release, lastdropdate, environment, testersname, ApproverName, effectiveUserID,
VerboseFlag

ReleaseView 0 release, reporttype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 release, reporttype, effectiveUserID, VerboseFlag

2 release, reporttype, effectiveUserID, VerboseFlag

Report 0 viewname, reportcriteria, parent, release, WorkAreaName, versionname, reporttype,
parenttype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 viewname, reportcriteria, parent, effectiveUserID, VerboseFlag

2 viewname, reportcriteria, parent, effectiveUserID, VerboseFlag

Report 0 dbobjnames, selspec, reportcriteria, colspec, queryopt, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 viewname, reportcriteria, selspec, colspec, queryChar, effectiveUserID, VerboseFlag

2 viewname, reportcriteria, selspec, colspec, queryChar, effectiveUserID, VerboseFlag

SizeAccept 0 WorkAreaName, component, release, sizetext, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, component, release, sizetext, sizetype, effectiveUserID,
VerboseFlag

2 WorkAreaName, component, release, sizetext, sizetype, effectiveUserID,
VerboseFlag

SizeAssign 0 WorkAreaName, component, release, NewOwner, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, component, release, NewOwner, sizetype, effectiveUserID,
VerboseFlag

2 WorkAreaName, component, release, NewOwner, sizetype, effectiveUserID,
VerboseFlag

Appendix C. User exit parameters 207

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

SizeCreate 0 WorkAreaName, component, release, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, component, release, sizetype, effectiveUserID, VerboseFlag

2 WorkAreaName, component, release, sizetype, effectiveUserID, VerboseFlag

SizeDelete 0 WorkAreaName, component, release, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, component, release, sizetype, effectiveUserID, VerboseFlag

2 WorkAreaName, component, release, sizetype, effectiveUserID, VerboseFlag

SizeReject 0 WorkAreaName, component, release, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, component, release, sizetype, effectiveUserID, VerboseFlag

2 WorkAreaName, component, release, sizetype, effectiveUserID, VerboseFlag

TestAbstain 0 WorkAreaName, TesterName, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, TesterName, release, environmentname,
type, effectiveUserID, VerboseFlag

2 WorkAreaName, DefectOrFeatureName, TesterName, release, environmentname,
type, effectiveUserID, VerboseFlag

TestAccept 0 WorkAreaName, TesterName, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, TesterName, release, environmentname,
type, effectiveUserID, VerboseFlag

2 WorkAreaName, DefectOrFeatureName, TesterName, release, environmentname,
type, effectiveUserID, VerboseFlag

TestAssign 0 WorkAreaName, OldOwner, NewOwner, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, OldOwner, NewOwner, release, environmentname, workareaType,
effectiveUserID, VerboseFlag

2 WorkAreaName, OldOwner, NewOwner, release, environmentname, workareaType,
effectiveUserID, VerboseFlag

TestCreate 0 DefectOrFeatureName, TesterName, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 DefectOrFeatureName, TesterName, release, environmentname, type,
effectiveUserID, VerboseFlag

2 DefectOrFeatureName, TesterName, release, environmentname, type,
effectiveUserID, VerboseFlag

TestDelete 0 DefectOrFeatureName, TesterName, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 DefectOrFeatureName, TesterName, release, environmentname, type,
effectiveUserID, VerboseFlag

208 Administrator’s Guide

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

2 DefectOrFeatureName, TesterName, release, environmentname, type,
effectiveUserID, VerboseFlag

TestReject 0 WorkAreaName, TesterName, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, TesterName, release, environmentname,
type, effectiveUserID, VerboseFlag

2 WorkAreaName, DefectOrFeatureName, TesterName, release, environmentname,
type, effectiveUserID, VerboseFlag

UserCreate 0 login, usersfullname, area, sendmailaddress, superuserprivilegeFlag, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 login, usersfullname, area, sendmailaddress, superuserprivilegeFlag, configFields,
effectiveUserID, VerboseFlag

2 login, usersfullname, area, sendmailaddress, superuserprivilegeFlag, configFields,
effectiveUserID, VerboseFlag

UserDelete 0 login, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 login, usersfullname, effectiveUserID, VerboseFlag

2 login, usersfullname, effectiveUserID, VerboseFlag

UserModify 0 login, newlogin, newusersfullname, newarea, newuserssendmailaddress,
newsuperuserprivilegeFlag, configFields, passwordlength, oldpassword,
newpassword, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 login, newlogin, oldusersfullname, newusersfullname, oldarea, newarea,
oldsendmailaddress, newsendmailaddress, oldsuperuserprivilegeFlag,
newsuperuserprivilegeFlag, configFields, dateoflastupdate, effectiveUserID,
VerboseFlag

2 login, newlogin, newusersfullname, newarea, newuserssendmailaddress,
newsuperuserprivilegeFlag, configFields, effectiveUserID, VerboseFlag

UserRecreate 0 login, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 login, usersfullname, olddropDate, effectiveUserID, VerboseFlag

2 login, usersfullname, olddropDate, effectiveUserID, VerboseFlag

UserView 0 login, displaytype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 login, displaytype, effectiveUserID, VerboseFlag

2 login, displaytype, effectiveUserID, VerboseFlag

VerifyAbstain 0 WorkAreaName, TesterName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, TesterName, type, effectiveUserID, VerboseFlag

2 WorkAreaName, TesterName, type, effectiveUserID, VerboseFlag

VerifyAccept 0 WorkAreaName, TesterName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, TesterName, type, effectiveUserID, VerboseFlag

Appendix C. User exit parameters 209

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

2 WorkAreaName, TesterName, type, effectiveUserID, VerboseFlag

VerifyAssign 0 WorkAreaName, OldOwner, NewOwner, effectiveUserID, TesterName, VerboseFlag

1 WorkAreaName, OldOwner, NewOwner, type, effectiveUserID, VerboseFlag

2 WorkAreaName, OldOwner, NewOwner, type, effectiveUserID, VerboseFlag

VerifyReject 0 WorkAreaName, TesterName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, TesterName, type, effectiveUserID, VerboseFlag

2 WorkAreaName, TesterName, type, effectiveUserID, VerboseFlag

WorkAreaAssign 0 release, WorkAreaName, NewOwner, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, NewOwner, workareaType,
effectiveUserID, VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, NewOwner, workareaType,
effectiveUserID, VerboseFlag

WorkAreaCancel 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

WorkAreaCheck 0 release, WorkAreaName, driver, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, drivername, workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, drivername, workareaType, effectiveUserID, VerboseFlag

WorkAreaCommit 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

WorkAreaComplet 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

WorkAreaCreate 0 release, WorkAreaName, DefectOrFeatureName, target, workareaOwner,
StandardFields, configFields, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

210 Administrator’s Guide

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

1 WorkAreaName, release, DefectOrFeatureName, target, workareaOwner,
workareaType, effectiveUserID, VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, target, workareaOwner,
workareaType, effectiveUserID, VerboseFlag

WorkAreaExtract 0 WorkAreaName, release, root, nokeysFlag, fmask, dmask, crlfFlag, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, release, root, nokeysFlag, fmask, dmask, crlfFlag, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

2 WorkAreaName, release, root, nokeysFlag, fmask, dmask, crlfFlag, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

WorkAreaFix 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

WorkAreaFreeze 0 release, WorkAreaName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, workareatarget, workareaType, effectiveUserID,
VerboseFlag

2 release, WorkAreaName, workareatarget, workareaType, effectiveUserID,
VerboseFlag

WorkAreaIntegra 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

WorkAreaModify 0 release, WorkAreaName, newtarget, StandardFields, configFields, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, release, oldtarget, newtarget, DefectOrFeatureName,
workareaType, effectiveUserID, VerboseFlag

2 WorkAreaName, release, oldtarget, newtarget, DefectOrFeatureName,
workareaType, effectiveUserID, VerboseFlag

WorkAreaReconci 0 release, WorkAreaName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, effectiveUserID, VerboseFlag

2 release, WorkAreaName, effectiveUserID, VerboseFlag

WorkAreaRefresh 0 release, WorkAreaName, source, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, source, workareaType, effectiveUserID, VerboseFlag

Appendix C. User exit parameters 211

TeamConnection
action Exit ID Parameters passed to the user exit program (see page 212 for definitions)

2 release, WorkAreaName, source, workareaType, effectiveUserID, VerboseFlag

WorkAreaTest 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType, effectiveUserID,
VerboseFlag

WorkAreaUndo 0 release, WorkAreaName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, target, workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, target, workareaType, effectiveUserID, VerboseFlag

WorkAreaView 0 release, WorkAreaName, reporttype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, reporttype, workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, reporttype, workareaType, effectiveUserID, VerboseFlag

User exit parameter definitions

The following list provides definitions for most of the parameters passed to user exit
programs. Parameters are listed in alphabetical order. Parameter names are in
lowercase, except where they are the name of a field in a TeamConnection database
table. For more information on these and other parameters, refer to the Commands
Reference.

abstract
Defect or feature abstract.

alternateversion
Specifies the name of a version of a driver, release, or work area where the
conflicting version of a part is visible.

answer
Specifies the reason for an action taken on a defect.

ApproverName
Approver’s TeamConnection user ID.

area Department or area in which the user works.

authority
Specifies a user’s authority group.

autoprune
Whether or not to automatically prune work areas that have not been
integrated with the release. Valid values are yes and no.

212 Administrator’s Guide

buildername
The name of the builder used to create an output part.

buildmode
The mode in which the build runs. The following values are valid:

1 force

2 normal

3 unconditional

4 report

buildparameters
Specifies the parameters passed to the build script.

cancelFlag
This flag is used with PartBuild actions to cancel a build request.

clienthostname
The name of the system where the client command originated.

clientportname
The port number used for the build pool.

committedFlag
This flag is used with ReleaseExtract and ReleaseLink actions to specify
whether the user wants the last committed (as opposed to the current)
versions of parts in the release. A value of 0 means to use the current version;
1 means to use the last committed version.

commonFlag
Indicates whether the part is common with other releases or not. A value of 0
indicates no, 1 indicates yes.

commonreleases
For a common part, this parameter specifies the other releases the part is
common with (on the partCheckIn action). Release names are separated by
blanks.

component
Specifies the name of a component.

componentprocess
Specifies the process to be used for a component in CompCreate actions.

condition
This parameter is used with the value parameter to determine if a build event
was successful.

configFields
This parameter has the format:

attribute name content
attribute name content

Appendix C. User exit parameters 213

...
null string

For exit ID 0, the attribute name can appear in abbreviated form, as it is not
processed by TeamConnection.

creatChangeFlag
This flag is used by PartTouch to specify the write permissions of the part:
0200 permits write by the owner; 0000 does not allow write. This parameter is
defined numerically, in octal notation. The fMode code is constructed by
combing the logical OR of the following values:

4000 setuid

2000 setgid

0400 Permits read by owner

0200 Permits write by owner

0100 Permits execute or search by owner

0040 Permits read by group

0020 Permits write by group

0010 Permits execute or search by group

0004 Permits read by all others

0002 Permits write by all others

0001 Permits execute or search by all others

For example, 0755 would permit read, write, and execute for the owner and
read and execute for all others.

crlfFlag
This flag is used by DriverExtract and ReleaseExtract to handle crlf
conversions when extracting Intel-based files to a UNIX-based platform.

date Enables you to extract only files from a release that are older than the
specified date.

dateoflastupdate
Specifies the date in modify actions.

defectname
Indicates the name of the defect.

DefectOrFeatureName
Indicates the name of the defect or feature for approval record, fix record, test
record, driver member, or work area actions.

description
Specifies a description of an object.

214 Administrator’s Guide

detailfilename
Specifies the file in which all build messages for a part are collected.

developmentmode
Valid values are serial and concurrent.

displaytype
This parameter is used on all view actions. The type of view format requested,
where:

0 stanza

1 raw

2 table

3 long

4 process

dmask Specifies the read, write, and execute directory permissions for the extracted
parts in octal notation.

driver, drivername
Specifies the name of the driver for defect, driver, driver member, and work
area actions.

driverstate
Values can be working, integrate, commit, or complete.

drivertype
Specified by the user when a driver is created, for example, development,
production, or prototype.

effectiveUserID
The TeamConnection user ID that initiated the transaction. This is the value of
the TC_BECOME environment variable or the -become attribute flag. In OS/2,
Windows 3.1, and Windows 95 environments, if this variable is not set and the
-become attribute is not specified, it is the value of the TC_USER environment
variable.

environment, environmentname
Specifies the environment in which the testing is to be done if the test
subprocess is included in the release process. (The tester/environment name
combination becomes an entry on the environment list for the release.)

ExtractType
Indicates whether this is a full or delta driver extract. 0 indicates delta; 1
indicates full.

featurename
Specifies the name of the feature for feature actions.

filenameonclient
The name of the source file from which a TeamConnection part is created
using the PartAdd or PartCheckin action.

Appendix C. User exit parameters 215

filetype
Specifies one of the following file types with the PartAdd action:

0 none

1 text

2 binary

Part type for the other part actions is text for text parts, and binary for binary
parts.

fmask Specifies the read, write, and execute file permissions for the extracted parts in
octal notation. Refer to the Commands Reference for details.

fMode Specifies the write permissions of the part: 0200 permits write by the owner;
0000 does not allow write. This parameter is defined numerically, in octal
notation. The fMode code is constructed by combing the logical OR of the
following values:

4000 setuid

2000 setgid

0400 Permits read by owner

0200 Permits write by owner

0100 Permits execute or search by owner

0040 Permits read by group

0020 Permits write by group

0010 Permits execute or search by group

0004 Permits read by all others

0002 Permits write by all others

0001 Permits execute or search by all others

For example, 0755 would permit read, write, and execute for the owner and
read and execute for all others.

forceFlag
Indicates whether the force option was chosen on part actions (0 indicates no
and 1 indicates yes). The force option is used to force a break between
common parts when using PartLock, PartCheckOut, PartCheckIn, PartDelete,
PartRecreate, PartRename, and PartUndo actions.

FromRelease
Specifies the name of the release to be linked from in ReleaseLink actions.

fromversionname
Specifies the version of the release to be linked from in ReleaseLink actions.

216 Administrator’s Guide

fromworkareaname
Specifies the name of the work area to be linked from in ReleaseLink actions.

gid Specifies ownership of extracted parts by identifying the internal number that
uniquely identifies the group to the system.

interestgroupname
Specifies the name of an interest group in a NotifyCreate or NotifyDelete
action.

lastdropdate
Specifies the date on which a release to be recreated using the
ReleaseRecreate action was deleted.

login The system login ID for a user. In single-user environments, such as OS/2,
Windows 3.1 and Windows 95, this parameter is the TC_USER environment
variable.

login@hostname
Specifies a host list entry in HostCreate and HostDelete actions.

longFlag
Indicates whether the -long flag is specified or not specified. A value of 0
indicates not specified; 1 indicates specified. The -long flag is available on
some of the view actions and is used to display more detailed information of
the object being viewed. The -long flag on the driverCheck action displays
details about prerequisites and corequisites.

name Specifies the name of a builder in Builder actions. In the CompModify action,
this parameter specifies the current component name.

newarea
Specifies a new area or department in which a user works.

newcomponent
Specifies a new name for a component.

newcomponentprocess
Specifies a new process to be used for a component.

newdefectname
Specifies a new name for a defect in a DefectModify action.

newdescription
Specifies a new description for an object.

newdrivername
Specifies a new name for a driver in a DriverModify action.

newdrivertype
Specifies a new type for the driver in DriverModify actions. Valid types include
development, production, or prototype.

newfeaturename
Specifies a new name for a feature in a FeatureModify action.

Appendix C. User exit parameters 217

newfMode
Specifies a new write permission for a PartModify action. See fmode for a list
of values.

newlogin
Specifies a new login ID for a user.

NewOwner
Specifies the new owner of an object in actions that create, modify, or assign
owners to objects.

newrelease
Specifies a new release name for ReleaseModify actions.

newreleaseprocess
Specifies the release process to be used for ReleaseCreate or ReleaseModify
actions.

newsendmailaddress
Specifies a new email address for a user’s notification messages.

newsuperuserprivilegeflag
Specifies the user’s superuser status for UserModify actions. Specify 0 to deny
superuser status or 1 to grant superuser status.

newtarget
Specifies a new target for work areas.

newtestersname
Specifies the full name of a new tester in an EnvModify action.

newtype
Specifies a new driver type for DriverModify actions. Valid types include
development, production, or prototype.

newusersfullname
Specifies the new full name for a user in UserModify actions.

newuserssendmailaddress
Specifies the new mail address for a user in UserModify actions.

newworkareaname
Specifies the work area to be linked to in ReleaseLink actions.

node Specifies a remote host on which to place the extracted part tree.

nokeysFlag
For extract actions, indicates whether you want to substitute assigned values
in place of keywords imbedded in the extracted parts. 0 means not to
substitute assigned values; 1 means to substitute assigned values.

numberofworkareas
Specifies the number of work areas to be deleted in a MemberDelete action.

nuPartPathName
Specifies the new path name for PartRename actions.

218 Administrator’s Guide

oldcomponentprocess
Specifies the process of a component to be modified.

olddescription
Specifies the description of an object to be modified.

olddropDate
Specifies the date on which a component, part, or user to be recreated using
the CompRecreate, PartRecreate, or UserRecreate action was deleted.

oldfMode
Specifies the old write permission for a PartModify action. See fmode for a list
of values.

OldOwner
Specifies the old owner of an object in actions that modify or assign owners to
objects.

oldreleaseprocess
Specifies the old release process to be changed by a ReleaseModify action.

oldsendmailaddress
Specifies an email address to be changed for a user’s notification messages.

oldsuperuserprivilegeflag
Specifies the user’s superuser status to be changed by a UserModify action.
Specify 0 if the user currently does not have superuser status or 1 if he or she
currently does have superuser status.

oldtarget
Specifies a target to be changed for work areas.

oldtype
Specifies the driver type to be changed by a DriverModify action. Valid types
include development, production, or prototype.

oldusersfullname
Specifies the full name for the user to be changed by a UserModify action.

originaldefectname
The name of a defect for which the current defect is a duplicate.

originalfeaturename
The name of a feature for which the current feature is a duplicate.

originator
The TeamConnection user ID of the user who opens the defect or feature.

outputversions
Specifies the number of versions of build output parts to be retained in
ReleaseCreate or ReleaseModify actions.

owner Specifies the component owner in CompCreate actions.

parent Specifies the parent of the part to generate a report on using the Report -view
PartView action.

Appendix C. User exit parameters 219

parentcomponent
Specifies the parent component for Component actions.

parentname
Specifies the parent of a part in a build tree in PartAdd, PartConnect, and
PartDisconnect actions.

parenttype
Specifies the part type of the parent of a part in a build tree in PartAdd,
PartConnect, and PartDisconnect actions. In Report actions, this parameter
specifies the part type of the parent of the part to generate a report on using
the Report -view PartView action.

parsername
Specifies the name of the parser used to create an output part.

parsercommand
Specifies the command file you want to associate with the parser. This can be
an .exe, a .com, a .cmd, or a .bat file. The executable file needs to be in the
execution path of the TeamConnection family server.

partpathName
Specifies the path name of a part in Part actions.

parttype
Specifies the type of a part, such as TCPart or vgdata.

pathName
Specifies the path name of parts in Collision actions.

paths Specifies a concatenated set of paths that define where the parser looks for
parts when processing the set of dependencies returned from the command
file. These dependencies come in two types:

v A dependency in which the file is stored in the TeamConnection database.
For example, hello.c includes hello.h, and both files are stored in the
TeamConnection database. During a build, these dependencies must be
extracted to a path accessible by the build processor.

v A dependency on a file that is not stored in the TeamConnection database.
An example of such a dependency is stdio.h, which is typically stored in a
compiler’s include path and not in the TeamConnection database.

poolname
Specifies the build pool used to build a part.

prefix Defect or feature prefix.

primeworkareaname
Prime corequisite work area name.

process
Specifies the component process in CompModify actions.

processoroptions
Parameters specified for passing to a builder upon builder -create.

220 Administrator’s Guide

reference
Defect or feature reference.

relationtoparent
How a part is related to its parent in the build tree, where:

1 input

2 output

3 dependent

release
Name of the release.

releasedatabasename
Name of a separate database for the part data (the contents of each part) in a
release.

releaseowner
Specifies the owner of a release.

remarks
For defect or feature actions, this is defect remarks or feature remarks. For
part actions, this is part remarks added when a new version is created.

reportcriteria
The criteria entered as the -where clause for a Report action.

reporttype
The type of report format requested, where:

0 stanza

1 raw

2 table

3 long

4 process

5 html

User exit messages are not displayed if the -raw format is selected.

retainlockFlag
Specifies that a part is to remain locked after is it checked in.

root This is the specified directory on the designated host where the extracted part
tree is to be placed.

script Specifies the name of the build script.

secondworkareaname
Second corequisite work area name.

sendmailaddress
The e-mail address to which a user’s notification messages are sent.

Appendix C. User exit parameters 221

severity
Defect severity driver.

sizetext
The sizing information for a defect or feature.

sizetype
Specifies whether the sizing record is associated with a defect or a feature.

source Specifies the name of a work area with which abnother work area is refreshed.

sourcerelease
Specifies the original release of a part to be linked using the PartLink action.

sourceversion
Specifies the original version of a part to be linked using the PartLink action.

sourceworkareaname
Specifies the original work area of a part to be linked using the PartLink action.

StandardFields
Contains any fields abbreviated by users, requiring interpretation and
verification on the TeamConnection server. Actions with configurable fields
allow for the ambiguity in parameter names that requires intervention by the
server.

state Specifies the state of parts in Collision actions.

superuserprivilegeflag
A value of yes indicates on; a value of no indicates off.

target Specifies the value of the work area target field for a WorkareaUndo action.

targetenvironment
Specifies the environment for which build output is generated.

targetrelease
Specifies the new release of a part to be linked using the PartLink action.

targetworkareaname
Specifies the new work area of a part to be linked using the PartLink action.

TeamcUserID
The user’s TeamConnection user ID on the client workstation. In AIX, HP-UX,
Solaris, and Windows NT environments, this is the login ID. In OS/2, Windows
3.1, and Windows 95 environments, this is the value of the TC_USER
environment variable.

temporaryfilename
Indicates if the -temporary flag is used on a Part -modify command.

temporaryfileonserver
For some part actions, the contents of the file on the client are copied to a
temporary file on the server. This parameter is the name for the temporary file
on the server.

222 Administrator’s Guide

temporaryFlag
Indicates the part is a temporary part on PartAdd and PartModify actions.

testersname, TesterName
Specifies the full name of the person responsible for testing an object.

timeout
Specifies the amount of time that the build processor waits for a build script to
complete before assuming a failure has occurred. The default is 1440 minutes
(24 hours).

translation
Specifies how the part is related to the translation process. For example, a part
might be translated into another language, used while translating other parts,
or completely unrelated to translation.

translation state
Specifies the translation state of the part. Valid values are notReady and ready.

transmitFlag
Indicates whether the builder part is to be copied from the client to the server
or not. Specify 0 or 1.

type Specifies whether the sizing record is associated with a defect or a feature on
Test actions.

typename
Specifies the type of parts being handled by Collision actions.

uid Specifies ownership of extracted parts by identifying the internal number that
uniquely identifies the user to the system.

usersfullname
Specifies the full name of a user.

value This parameter is used with the consition parameter to determine if a build
event was successful.

VerboseFlag
Specifies that you want to see a confirmation message after you issue this
action. 0 indicates off; 1 indicates on. The user exit program can use this flag
to include confirmation or status messages only when the -verbose flag is on.

versionname
Part version name.

viewname
The name of the view (for example, partView) that is being reported on.

WorkAreaName
Specifies the name of a work area.

workareaOwner
Specifies the owner of a work area.

Appendix C. User exit parameters 223

workareastate
The value can be approve, fix, integrate, commit, test, or complete.

workareatarget
Specifies the target field used when creating or modifying a workarea in
WorkAreaFreeze actions.

workareaType
The value can be defect or feature.

224 Administrator’s Guide

Appendix D. Environment Variables

You can set environment variables to describe the TeamConnection environment in
which you are working. You are not required to set your TC_FAMILY environment
variable for the TeamConnection client command line interface. However, if the
TC_FAMILY environment variable is not set, the -family must be specified for every
client command. See “Setting environment variables” on page 231 for more information
about setting environment variables.

The names of the TeamConnection environment variables, the purpose they serve, the
equivalent TeamConnection flag, the equivalent Settings notebook field, and the
TeamConnection component that uses the environment variable are listed in the
following table.

You can override the value you set for an environment variable by using the
corresponding flag in a TeamConnection command. When an environment variable has
a Settings notebook equivalent, TeamConnection uses the two as follows:

v The environment variable controls the command line interface.

v The Settings notebook controls the graphical user interface.

If there is no Settings notebook equivalent for the environment variable, then the
environment variable takes effect regardless of the interface you are using.

To see some of your client settings, you can issue the following command from a
command prompt:

teamc report -testServer

This command returns information like the following:

Connect to Family Name: ptest
Server TCP/IP Name: amachine.company.com
Server IP Address: 9.1.23.45
Server TCP/IP Port Number: 9999

Server Specific Information ----------------------------------
Product Version: 3.0.0
Operating System: AIX
Message catalog language: English
Server Mode: non-maintenance
Authentication Level: HOST_ONLY

Table 22. TeamConnection environment variables

Environment variable Purpose Flag Setting Used by

LANG Specifies the language-specific
message catalog.

Client, family
server

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 225

Table 22. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

NLSPATH Specifies the search path for
locating message files.

NLS path Client, family
server

PATH Specifies where tcadmin is to
search for the family create
utilities.

Client, build
server, family
server

TC_BACKUP Controls whether or not the
following commands create
backup files. If this
environment variable is set to
off or OFF, the commands do
not create backup files.

v builder -extract

v part -checkout

v part -extract

v part -merge

v part -reconcile

Family server

TC_BECOME Identifies the user ID you want
to issue TeamConnection
commands from, if the user ID
differs from your login. You
assume the access authority of
the user ID you specify.

-become Become
user

Client, build server
(except mvs)

TC_BUILDENVIRONMENT Specifies the build environment
name, such as OS/2 or MVS.
The value you specify here can
be anything you like, but it
must exactly match the
environment specified for a
builder in order for the builder
to use this build agent. This
value is case-sensitive.

-e Build server

TC_BUILDMINWAIT Minimum amount of time to
wait (in seconds) between
queries for new jobs. Default
setting is 5, minimum setting is
3.

Build server

TC_BUILDMAXWAIT Maximum amount of time to
wait (in seconds) between
queries for new jobs. Default
setting is 15, maximum setting
is 300.

Build server

226 Administrator’s Guide

Table 22. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_BUILDOPTS Specifies build options for
sending build log file messages
to the screen, and setting the
logging level. If you do not
specify any of these options,
then the build server writes
build messages to the build log
file (teamcbld.log), and writes a
minimum level of messages to
the log file. Some possible
values are:

v TOSCREEN (-s) sends the
teamcbld.log file to the
screen in addition to sending
it to a file.

v USEENVFILE (-n)

– writes the changed
environment variables to
a file called tcbldenv.lst
instead of setting them in
program’s environment.
The format of the file is
variable=value.

– writes the list of input
files to a file called
tcbldin.lst . One file per
line, format is pathName
type.

– writes the list of output
files to a file called
tcbldout.lst . One file per
line, format is pathName
type.

-s, -n Build server

TC_BUILDPOOL Specifies the build pool name. -p Pool Build server

TC_BUILD_RSSBUILDS_FILE Specifies the name of startup
files to be used to provide
information about build servers
to the build process.

Build server

TC_CASESENSE Changes the case of the
arguments in commands, not
in queries.

Case Client

Appendix D. Environment Variables 227

Table 22. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_CATALOG Specifies a specific file for the
TeamConnection message
catalog. Sometimes, depending
upon the operating system
environment, the catalog open
command will only look in a
particular directory for the
catalog. If the host is running
multiple versions of
TeamConnection, this variable
may be used. To set this
environment variable, specify
the file path name of the
message catalog as in the
following example:

TC_CATALOG=
"/family/msgcat/teamc.cat"

Family server, oe
build server

TC_COMPONENT Specifies the default
component.

-component Component Client, make
import tool

TC_DBPATH Specifies the database
directory path. Family specific
database files reside here.

Family server

TC_FAMILY Identifies the TeamConnection
family you work with.

-family Family Build server, client,
family server,
make import tool

TC_MAKEIMPORTRULES Specifies the name of the rules
file that TeamConnection uses
when importing the makefile
data into TeamConnection. If
you set this environment
variable, then you do not have
to use the /u option with the
fhomigmk command. Specify
the full path name of the rules
file. If neither this environment
variable nor the /u option is
used, TeamConnection uses
default rules.

Make import tool

228 Administrator’s Guide

Table 22. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_MAKEIMPORTTOP Strips off the leading part of
the directory name when
importing parts into
TeamConnection. For example,
you have parts with the
following directory structure:
g:\octo\src\inc\. To create these
parts without the g:\octo
structure, you can set
TC_MAKEIMPORTTOP=g:\octo
before you invoke the make
import tool. The parts created
in TeamConnection have the
directory structure of src\inc\.

Make import tool

TC_MAKEIMPORTVERBOSE Causes the -verbose flag to be
added to part commands
created by fhomigmk.

Make import tool

TC_MIGRATERULES Specifies the name of a file
containing the rules to be
applied for migration of
makefiles if the name is not
supplied on the fhomigmk
command line as a parameter.

Client

TC_MODPERM Controls whether or not the
read-only attribute is set after a
part is created, checked in or
unlocked in TeamConnection.
To cause the read-only
attribute to be set, specify
TC_MODPERM=ON. To
prevent the read-only attribute
from being set, specify
TC_MODPERM=OFF. The
default is TC_MODPERM=ON.

Client

TC_NOTIFY_DAEMON An alternate way of starting
notifyd with the teamcd
command. If you set this
environment variable, then you
do not have to use the -n
option with the teamcd
command. Specify the full path
name of the mail exit to use
with notifyd.

Family server

TC_RELEASE Specifies a release. -release Release Client, make
import tool

TC_TOP Specifies the source directory. -top Top Client

Appendix D. Environment Variables 229

Table 22. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_TRACE Specifies the variable that lets
the user designate which parts
should be traced. You should
modify this only when directed
to do so by an IBM service
person. Otherwise it is set to
null. To trace all parts, specify
TC_TRACE=*.

Client, family
server, build server

TC_TRACEFILE Specifies the output (part path
and name) of the trace that the
user designates using
TC_TRACE. The default trace
file name is tctrace. For the
MVS build server, the default
trace file is stdout.

Client, family
server, build server

TC_TRACESIZE Specifies the maximum size of
the trace file in bytes. If the
maximum is reached, wrapping
occurs. The default is one
million bytes.

Client, family
server, build server

TC_USER Specifies the user login ID for
single-user environments OS/2
and Windows 95 (if not using
the login facility). This
environment variable is not
used in multiuser environments
AIX, HP-UX, Solaris, MVS,
MVS/OE, and Windows NT. If
a user is using the Windows
95 login facility, this
environment variable is not
used.

User ID Client, build server

TC_WORKAREA Specifies the default work area
name.

-workarea Work area Client, make
import tool

TC_WWWPATH Specifies the path for the
HTML helps and image files for
Web client.

Client, family
server

TC_WWWDISABLED Disables the Web client. Family server

The following environment variables are dynamically set by the teamcbld command
processing before the build script is invoked:

Table 23. TeamConnection dynamically set build environment variables

Environment variable Purpose Flag Setting Used by

TC_BUILD_USER Login of user who initiated the
part -build command.

Build server

230 Administrator’s Guide

Table 23. TeamConnection dynamically set build environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_INPUT List of input files (separated by
spaces).

Build server

TC_INPUTTYPE List of input file types (such as
TCPart).

Build server

TC_OUTPUT List of output files. Build server

TC_OUTPUTTYPE List of output file types. Build server

TC_LOCATION Directory where build script is
invoked.

Build server
(except MVS build
server)

Setting environment variables

For methods of setting your environment variables, refer to your operating system
documentation. For example, you can use the following command to set the
TC_FAMILY environment variable:

v OS/2 - SET TC_FAMILY=familyName@hostname@portnumber

v UNIX - export TC_FAMILY=familyName@hostName@portNumber

Appendix D. Environment Variables 231

232 Administrator’s Guide

Appendix E. TeamConnection NLS and DBCS considerations

This appendix describes how to use IBM VisualAge TeamConnection Enterprise Server
Version 3 in situations that require National Language Support (NLS) and Double-Byte
Character Sets (DBCS) in all the supported platforms.

The following topics are addressed in this appendix:

v The overview of the NLS and DBCS support provided by IBM VisualAge
TeamConnection Enterprise Server Version 3, such as usage of locale XPG/4 I18N
programming model, and the supported locales and platforms.

The locale support is already provided by the UNIX operating systems. However, in
OS/2 and Windows 32-bit, the locale support is not provided by these operating
system, instead it is provided by TeamConnection during the installation process.

v The main characteristics and limitations related to NLS/DBCS, such as the
interoperability between clients and server, and special cases for the manipulation of
data by TeamConnection.

v The main issues related to installation, administration and runtime, such as directory
structure of the installed code, and why you should not change the code page of an
existing TeamConnection family.

More information on NLS and DBCS considerations for TeamConnection may be
available in technical reports on the IBM VisualAge TeamConnection Enterprise Server
Library home page. To access this home page, select Library from the IBM VisualAge
TeamConnection home page at URL http://www.software.ibm.com/ad/teamcon.

Overview of TeamConnection NLS and DBCS support

Language and culture sensitive information in TeamConnection

VisualAge TeamConnection supports the I18N (Internationalization) locale model
proposed by XPG/4 (X/Open Portability Guide, issue 4) in which the language and
culture sensitive information are not hard coded in the executable files; instead, they
are provided as system resources by means of a ″locale″ that the user can specify at
run-time.

One of the components of a locale is the code page in which the characters will be
handled. For example, in AIX 4, the default locale is ″en_US″ which is for the English
language used in the USA and the associated code page is ISO8859-1, which is
different than the default code page used for English in OS/2 (code page IBM-850) but
the ISO8859-1 code page is similar to the one used for English in Windows (code page
MS-1252 Latin 1).

The locale model for XPG/4 establishes several environment variables that can be used
for controlling the culture sensitive information. Table 24 on page 234 describes these
environment variables, their function and how TeamConnection deals with them.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 233

Table 24. How TeamConnection handles the locale environment variables

Locale environment variable Function How TeamConnection uses it

LANG Specifies the installation
default locale.

It is an identifier that is used to
resolve the complete path
where the message catalogs
and other language-sensitive
files are located in the system.
The specification for
TeamConnection is shown in
note (3).

NLSPATH Specifies the full path for the
message catalog file.

It is the specification of the full
path where the message
catalog file is located. The
specification for
TeamConnection is shown in
note (4).

LC_ALL Overrides the value of other
LC_* environment variables.

It is not explicitly exploited by
TeamConnection.

LC_COLLATE Determines the
character-collation or
string-collation rules.

It is ignored by
TeamConnection. (See Note
1).

LC_CTYPE Determines the character
handling rules governing the
interpretation of sequences of
bytes of text data characters
and classification of characters.

It is ignored by
TeamConnection. However, if
LANG is not defined, then the
value of LC_CTYPE is used by
the UNIX operating system.
The default value is the C
locale.

LC_MESSAGES Determines the rules governing
affirmative and negative
responses, and the locale for
messages and menus.

It is ignored by
TeamConnection.

LC_MONETARY Determine the rules governing
monetary-related formatting.

It is ignored by
TeamConnection, because it
does not handle this kind of
information.

LC_NUMERIC Determine the rules governing
non-monetary numeric
formatting.

It is ignored by
TeamConnection, because it
handles only integer numbers
with no separation for
thousands.

LC_TIME Determine the rules governing
date and time formatting.

It is ignored by
TeamConnection. There is no
special processing for the date
and time information. (See
Note 2).

234 Administrator’s Guide

Notes:

1. TeamConnection itself does not perform any sorting of data. Instead, the sorting is
performed by the database.

2. The date and time in TeamConnection is represented as YYYY/mm/dd hh:mm:ss,
where YYYY is the year, mm is the month, dd is the day, hh is the hour, mm is the
minute, and ss is the second. Because four digits are used to represent a year,
TeamConnection is compliant with the Year 2000 specifications.

3. The specification for LANG for TeamConnection is (Korn shell):

export LANG=en_US

4. The specification for NLSPATH for TeamConnection is (Korn shell):

export NLSPATH=/usr/teamc/nls/msg/%L/%N

Specify %L and %N as shown in uppercase. The placeholder %L is for all practical
purposes a synonym for the value of the variable LANG, and the placeholder %N is
used by the TeamConnection code to specify during run-time the name of the file
that has the messages to be displayed (message catalog).

Supported locales (languages and code pages)

VisualAge TeamConnection Version 3 provides support for the following locales (which
include the translated message catalogs):

v Single-Byte Character Set (SBCS) locales; see “Supported Single-Byte Character Set
(SBCS) locales” on page 236.

v Double-Byte Character Set (DBCS) locales; see “Supported Double-Byte Character
Set (DBCS) locales” on page 236.

The majority of the locale names follow a format similar to en_US, where the first 2
characters represent the abbreviation for language names defined in ISO 639 (such as
″en″ for English) and the last 2 characters represent the abbreviations for country
names defined in ISO 3166 (such as ″US″ for the United States of America).

In some cases, the locale names may have a suffix which represents a special
identification, such as the HP-UX locale ″zh_TW.big5″.

Locales supported by DB2 Universal Database (UDB) Version 5

TeamConnection uses DB2 Universal Database (UDB) Version 5 which is enabled to
handle DBCS, regardless of the locale. The installation of TeamConnection also
includes the installation of DB2 UDB V5 and its corresponding locales. Most of the
information in the following tables was obtained from Table 101 ″Supported Languages
and Code Sets″ from Appendix M, ″National Language Support,″ in the DB2 UDB V5
Administration Guide.

Appendix E. TeamConnection NLS and DBCS considerations 235

Supported Single-Byte Character Set (SBCS) locales

VisualAge TeamConnection supports the following Single-Byte Character Set (SBCS)
locales. It is important to emphasize that the locales ″En_US″ (code page 850) and
″en_US″ (code page ISO8859-1) are different. For example, if you use a
TeamConnection family in AIX with the ISO locale en_US (code page ISO8859-1), and
a TeamConnection client in OS/2 with the En_US locale (code page IBM-850), then you
will see ″code page incompatibility″ problems (in which some characters will NOT be
shown or will not look OK).

United States of America: The relevant codes for United States of America are:

Country Name
United States of America

Country Codes
1, US

Language Codes
enu, en

The supported code pages and locales for United States of America are shown below.

Table 25. United States of America - supported code pages and locales

Code Page Code Set Locale Operating
System

Notes

819 ISO8859-1 en_US AIX

850 IBM-850 En_US AIX

819 iso8859-1 en_US.iso88591 HP-UX

1051 roman8 en_US.roman8 HP-UX

819 ISO8859-1 en_US Solaris

437 IBM-437 En_US OS/2

850 IBM-850 En_US OS/2

1252 1252 en_US Win32 (1)

37 IBM-037 - OS/390

Notes:

1. The Microsoft Latin code page 1252 is very similar to ISO8859-1 (Latin 1). This
code page is only used in the TeamConnection GUI tools. For details on the
conversion of code pages in Windows, see “No conversion of code points when
exchanging data” on page 240.

Supported Double-Byte Character Set (DBCS) locales

VisualAge TeamConnection supports the following Double-Byte Character Set (DBCS)
locales. It is important to emphasize that the locales ″Ja_JP″ and ″ja_JP″, and
″Zh_TW″ and ″zh_TW″ are different. For example, if you use a TeamConnection family
in AIX with the EUC locale ja_JP (code page IBM-eucJP), and a TeamConnection client

236 Administrator’s Guide

in OS/2 with the Ja_JP locale (code page IBM-932) then you will see ″code page
incompatibility″ problems (in which some characters will NOT be shown or will not look
OK).

Japan: The relevant codes for Japan are:

Country Name
Japan

Country Codes
81, JP

Language Codes
jap, ja

The supported code pages and locales for Japan are shown below.

Table 26. Japan - supported code pages and locales

Code Page Code Set Locale Operating
System

Notes

954 IBM-eucJP ja_JP AIX

932 IBM-932 Ja_JP AIX

954 eucJP ja_JP.eucJP HP-UX

5039 SJIS ja_JP.SJIS HP-UX

954 eucJP ja Solaris

932 IBM-932 Ja_JP OS/2 (1)

942 IBM-942 Ja_JP OS/2 (1)

943 IBM-943 Ja_JP OS/2 (1)

943 IBM-943 Ja_JP Win32 (1)

930 IBM-930 - OS/390

939 IBM-939 - OS/390

5026 IBM-5026 - OS/390

5035 IBM-5035 - OS/390

Notes:

1. The Japanese IBM-932, IBM-942 and IBM-943 code pages have very small
differences between them, but generally speaking, they are compatible with each
other.

South Korea: The relevant codes for South Korea are:

Country Name
South Korea

Country Codes
82, KR

Appendix E. TeamConnection NLS and DBCS considerations 237

Language Codes
kor, ko

The supported code pages and locales for South Korea are shown below.

Table 27. South Korea - supported code pages and locales

Code Page Code Set Locale Operating
System

Notes

970 IBM-eucKR ko_KR AIX

970 eucKR ko_KR.eucKR HP-UX

970 eucKR ko_KR Solaris

949 IBM-949 ko_KR OS/2 (1)

1363 1363 ko_KR Win32 (1)

933 IBM-933 - OS/390

Notes:

1. The Korean code page for Windows NT/95 is called UHC (Unified Hangeul Code).
The 1363 code page extends IBM-949 by adding missing Hangeul characters with
no change of assignments in code points for IBM-949.

People’s Republic of China (PRC): The relevant codes for People’s Republic of
China (PRC) are:

Country Name
People’s Republic of China (PRC)

Country Codes
86, CN

Language Codes
chs (Simplified), zh

The supported code pages and locales for People’s Republic of China (PRC) are
shown below.

Table 28. People’s Republic of China (PRC) - supported code pages and locales

Code Page Code Set Locale Operating
System

Notes

1383 IBM-eucCN zh_CN AIX

1386 GBK Zh_CN.GBK AIX

1383 eucCN zh_CN.hp15CN HP-UX

1383 eucCN zh Solaris

1381 IBM-1381 Zh_CN Win32

1386 GBK Zh_CN Win32 (1)

935 IBM-935 - OS/390

1381 IBM-1381 Zh_CN OS/2

238 Administrator’s Guide

Table 28. People’s Republic of China (PRC) - supported code pages and
locales (continued)

Code Page Code Set Locale Operating
System

Notes

1386 GBK Zh_CN OS/2 (1)

Notes:

1. The code page for Simplified Chinese for Windows NT/95 is called GBK (Guo Biao
Kuo). The IBM-1386 code page is equivalent to Microsoft 936. The IBM-1386 code
page extends IBM-1381 by adding missing Unicode characters with no change of
assignments in code points for IBM-1381.

2. The EUC code page for Traditional Chinese (IBM-eucTW) for AIX 4.1 has been
enhanced with respect to AIX 3.2, but it keeps the same locale name (zh_TW). This
means that if the user in AIX 4.1 exploits the new characters in the enhanced locale
version, there could be compatibility problems when the user uses the old locale
version.

Taiwan, Republic of China (ROC): The relevant codes for Taiwan, Republic of China
(ROC) are:

Country Name
Taiwan, Republic of China (ROC)

Country Codes
886, TW

Language Codes
cht (Traditional), zh

The supported code pages and locales for Taiwan, Republic of China (ROC) are shown
below.

Table 29. Taiwan, Republic of China (ROC) - supported code pages and locales

Code Page Code Set Locale Operating
System

Notes

938 IBM-938 - OS/2 old?

948 IBM-948 - OS/2 old?

950 big5 Zh_TW OS/2 (1)

950 big5 Zh_TW AIX (1)

964 IBM-eucTW zh_TW AIX (2)

950 big5 zh_TW.big5 HP-UX (1)

964 eucTW zh_TW.eucTW HP-UX

950 big5 big5 Solaris (1,3)

964 eucTW zh_TW Solaris

950 big5 Zh_TW Win32 (1)

937 IBM-937 - OS/390

Appendix E. TeamConnection NLS and DBCS considerations 239

Notes:

1. The PC code page for Traditional Chinese is called Big-5.

2. The EUC code page for Traditional Chinese (IBM-eucTW) for AIX 4.1 has been
enhanced with respect to AIX 3.2, but it keeps the same locale name (zh_TW). This
means that if the user in AIX 4.1 exploits the new characters in the enhanced locale
version, there could be compatibility problems when the user uses the old locale
version.

3. The Solaris code page 950 (Taiwan) does not support certain characters from the
IBM-850 code page.

Characteristics and limitations of NLS and DBCS support

No conversion of code points when exchanging data

The TeamConnection clients and servers do not alter the code points of the data. This
means that the data is NOT converted from one code page to another when entered by
the user, when stored in the database used by the family or when exchanged between
a client and the server. :p. The information about the code page in which the data was
entered is not stored with TeamConnection objects; furthermore, there is no exchange
of information between the client and the server to indicate which code page is being
used by each of them.

No impact if using English characters

Because most code pages have the same code points for the first 128 characters,
which includes all the characters used in the English alphabet, then in practice there is
no effect in using different code pages between clients and servers, if using only
English characters.

As an example, the default multilingual code page for OS/2 is IBM-850, for Windows is
MS-1252 Latin 1, and for AIX Version 4 is ISO8859-1. In these code pages the first 128
characters are the same, and thus, there is no impact in code points the English
characters are used when remarks are entered for a defect in the OS/2 client, stored in
the AIX server and retrieved by the Windows client.

For example, the code point value of 100 is the lower case letter ″d″ which has the
same graphic representation in most of the code pages, as exemplified in the following
table.

Table 30. Graphical representation of code point 100 in several code pages

Platform Locale Code Page Representation

OS/2 English IBM-437 lower case ’d’

OS/2 English IBM-850 lower case ’d’

Windows, DOS mode English MS-437 lower case ’d’

Windows, DOS mode English MS-850 lower case ’d’

240 Administrator’s Guide

Table 30. Graphical representation of code point 100 in several code
pages (continued)

Platform Locale Code Page Representation

Windows, Graphical English MS-1252 lower case ’d’

AIX En_US IBM-850 lower case ’d’

AIX en_US ISO8859-1 lower case ’d’

OS/2 Japanese IBM-932 lower case ’d’

Windows Japanese MS-932 lower case ’d’

AIX ja_JP IBM-eucJP lower case ’d’

Impact if using non-English characters

However, if the customer wants to use non-English characters, which are characters
with code points greater than 128, such as accented characters, umlauts, double-byte
characters, then the code pages differ greatly in this respect.

For example, the character with code point value of 252 (which can be entered by
pressing ALT and typing 2, 5 and 2 from the numeric keypad in most systems) has the
following different representations, as shown in the following table.

Table 31. Graphical representation of code point 100 in several code pages

Platform Locale Code Page Representation

OS/2 English IBM-437 superscript ’n’

OS/2 English IBM-850 superscript ’3’

Windows, DOS mode English MS-437 superscript ’n’

Windows, DOS mode English MS-850 superscript ’3’

Windows, Graphical English MS-1252 lower case ’u’ with
dieresis

AIX En_US IBM-850 superscript ’3’

AIX en_US ISO8859-1 lower case ’u’ with
dieresis

OS/2 Japanese IBM-932 First byte of DBCS
character

Windows Japanese MS-932 First byte of DBCS
character

AIX ja_JP IBM-eucJP First byte of DBCS
character

In the above case, a German customer using Windows in Graphical Mode, with code
page MS-1252 may enter a string that contains the u with umlaut and store it in
TeamConnection, but the same customer when retrieving the data from OS/2 using
IBM-850 code page, the character in the string will be shown as the number 3 in
superscript.

Appendix E. TeamConnection NLS and DBCS considerations 241

To maximize compatibility, use same/similar code page

As shown in “Impact if using non-English characters” on page 241, it is important that
the customers who are using multiple platforms with TeamConnection, must understand
the implications of using different code pages when dealing with non-English
characters.

If possible, the customer should use the same (or similar) code page in the
TeamConnection client and in the server.

Once a family is created, do not change the code page

To avoid compatibility problems, if a family is created and used with a given code page,
then this code page should not be changed later on.

For example, if a family is created with the Japanese IBM-932 code page in OS/2 and
then migrated to the Japanese IBM-eucJP code page in AIX, then there might be
several DBCS characters that are valid in the IBM-932 code page that will not be
displayed properly when using the IBM-eucJP code page.

Using UNICODE in the future to solve incompatibilities

In the future, once the support for the UNICODE code page is widespread and
available in all the platforms supported by TeamConnection, then the customer could
choose to use the UNICODE code page for the clients and the server, and in this way,
avoid the current incompatibility between different code pages.

Another alternative that we studied to solve to this incompatibility problem between
code pages was to add an extra field for EVERY SINGLE piece of data that is handled
by TeamConnection in order to identify the code page that was used when the data was
originated; then, this would require that the TeamConnection server should get the code
page used by each client that is requesting a service, and then do the necessary
conversions when exchanging the data. Because this alternative is very expensive to
implement and has a lot of ramifications, and because UNICODE is the right way for
the long term, we are not implementing this alternative to tag each piece of data.

Exceptions to the handling of characters in TeamConnection

The ¦ split vertical bar character could be changed

The ¦ (split vertical bar) character is used to separate the fields in the ″teamc report
-raw″ command. Thus, if this character is found in a field that is shown by this
command, such as in the abstract of a defect, then the character is changed to ″!″
(exclamation point) by the TeamConnection client. Thus, the server does not see these
split vertical bar characters.

The reason for this change is to avoid confusion during the parsing of the -raw output
because the split vertical bar is used to separate the fields. If in the output to be parsed

242 Administrator’s Guide

there is a split vertical bar character that is NOT intended to be a separator of a field,
then the parsing routine will not be able to guess that this particular split vertical bar
should not be considered as a field separator. In other words, ALL split vertical
separator bars are considered to be field separators, and thus, any such characters in
the abstract will not be parsed appropriately.

For example, when opening a defect, if the abstract field is left blank then the first 63
characters of the remarks field will be placed in the abstract. The abstract is a field that
is shown with the ″teamc report -raw″ command, but the remarks field is not shown with
this command. Thus, if the first 63 characters of the remarks have split vertical bar
characters they will be left untouched in the actual remarks, but they will be converted
to ″!″ in the abstract.

Keyword expansion

TeamConnection supports the expansion of certain keywords embedded in the text
during the extraction of text files. The routines that handle the expansion are NLS and
DBCS enabled.

The important characteristic to remember is that the expansion is done by the
TeamConnection family server and not by the client.

CR (carriage return) and LF (line feed)

Although this is not an NLS issue, this is another topic that is worth including in this
technical report, because some users may think, incorrectly, that this could be caused
by code conversion processing done by TeamConnection.

The end of a line of text in OS/2 or in Windows is represented by the character pair
CR-LF (carriage return and line feed), whereas in UNIX is represented simply by the
character LF (line feed).

In TeamConnection, the model of what-you-see-is-what-you-get is used. This means
that if a user creates a file in TeamConnection, regardless of the platform of the server,
then TeamConnection will NOT do any conversion of LF or CRLF on that file. There are
choices in the -extract action to allow for more fine tuning of these on-the-fly-
conversions. For example, an AIX user may wish to extract with only LF a file that was
stored originally from OS/2 that has CRLF.

The following file will be the source file to be used in the rest of the examples in this
section:

This is line 1
This is line 2
This is line 3

If the source file is created from an OS/2 client and later on is extracted into a UNIX
client without CRLF conversion, then the resulting file will have the CR character at the
end of each line and the file would look like:

Appendix E. TeamConnection NLS and DBCS considerations 243

This is line 1|M
This is line 2|M
This is line 3|M

If the source file is created from a UNIX client and later on is extracted into an OS/2
client without CRLF conversion, then the resulting file will not have the CR character at
the end of each line and the file would look like:

This is line 1
This is line 2

This is line 3

All clients in the same host must use the same language (Intel only)

For OS/2 and Windows NT clients, all the TeamConnection clients that execute from
one single host must use the same language if they run at the same time.

This limitation is due to the inherent limitation of these platforms in which ONLY ONE
version of given DLL can be loaded at the same time, and because these platforms are
not fully compliant with the XPG/4 model that allows usage of multiple locales. If there
are different versions of some DLLs for each language, and if the English version of the
DLL is loaded, the Japanese one cannot be loaded at the same time. This precludes
having clients that have different languages to run at the same time.

Untraslated strings that are visible to the users

There are certain kinds of strings that are visible to the user that are not translatable:

v command, action and flag names

v state names

v database table and view names

v database table column headings

v action name used in the audit log, the mail notifications, and the authority and
interest tables

v the type field in the config database table

DBCS Limitations

The following limitations apply to DBCS character sets:

1. The administration tools for the TeamConnection Server expect SBCS characters as
the reply for Yes (y) and No (n).

2. The administration tools for the TeamConnection Server have the following
limitations for DBCS:

a. The *.ld files (authority, interest, cfgcomproc and cfgrelproc) in the family
account can accept DBCS characters in the first field for each entry. The
maximum size for this field is 15 bytes.

244 Administrator’s Guide

b. The config.ld file in the family account can accept DBCS characters in the
following fields (the positions are defined from left to right):

v Field position 1 (″Field Type″): limit is 15 bytes

v Field position 2 (″Value″): limit is 15 bytes

v Field position 6 (″Description″): limit is 63 bytes

c. The tcadmin program can accept only SBCS characters in the following fields
related to configurable fields:

v CMD attribute

v DB Column Name

d. The tcadmin program can accept DBCS characters in the following fields related
to configurable fields:

v Field label: limit is 15 bytes

v Title label: limit is 15 bytes

v Type: must be a valid type defined in config.ld (limit is 15 bytes).

3. The TeamConnection Commands Reference manual, in Appendix A, ″Querying the
TeamConnection database″, shows the datatype and the size limit for the attributes
of the TeamConnection objects; however, the actual size limit for many of the
character attributes is smaller than the specified limit. For example, the field ″login″
in the ″Users″ table shows that the limit is 31 bytes, but in reality only 15 characters
(SBCS or DBCS) can be stored in that field. The fields affected are usually related
to names, such as the User login, the Component name, etc.

If you specify a string that has DBCS characters and that the size of the string goes
beyond the limit, then the following error message will be displayed by the
TeamConnection server:

0010-149 Your request cannot be completed.
The attribute flag argument xxx is not valid.

4. Warning on the use of 0x7C as a second byte in a DBCS character

The Ox7C character corresponds to the vertical bar (’|’) which in TeamConnection is
interpreted as a field separator when dealing with reports and with handling
windows and fields in the GUI.

You can use this value as the 2nd byte of a DBCS character, however, when the
data that contains this 2nd byte is handled in a TeamConnection client that has an
SBCS code page (and not a DBCS code page), then, the output shown by the
client may be displaced, that is, the 0x7C value will be interpreted as the field
separator. Moreover, this situation will apply for any string in the *.ld files and in the
configurable fields.

Installation, administration, and runtime issues

Installation issues related to NLS and DBCS

The installation process for TeamConnection is similar in UNIX, in OS/2 and Windows
with respect to NLS. The similarities and the differences are explained in the following
sections.

Appendix E. TeamConnection NLS and DBCS considerations 245

After the installation process, the executable code and the language related files will be
installed in separate directories that are system wide, that is, they are not exclusive to
one account.

When a TeamConnection family is created, several files are copied into the directory for
the TeamConnection family; several of these files contain language sensitive information
(such as the config.ld file and the files in the chfField directory). The family
administrator can modify these files for the specific family; these files are not shared
with other families.

Using a similar directory structure across all the platforms

Even though there are differences in the NLS facilities that are available from the UNIX
and the Intel (OS/2 and Windows) platforms the installation of TeamConnection in these
platforms creates a similar directory structure whose top directory is shown below
(using the default directory):

AIX 4 /usr/teamc

HP-UX 10
/opt/teamc

Solaris /opt/teamc

OS/2 c:\teamc

Windows NT and 95
c:\Program Files\TeamConnection

Storing the language-independent files: The language-independent files for the
TeamConnection code are stored in similar directories, as shown in the following
example. The teamc server daemon (teamcd) is located in the subdirectory ″bin″, from
the TeamConnection top directory as shown below:

AIX 4 /usr/teamc/bin

HP-UX 10
/opt/teamc/bin

Solaris /opt/teamc/bin

OS/2 c:\teamc\bin

Windows NT and 95
c:\Program Files\TeamConnection\bin

Storing the language-dependent files: In a similar way, the language-dependent
files for the TeamConnection code are stored in a similar subdirectory structure, which
is the subdirectory ″nls″ as parent and then the ″msg″ for messages and ″cfg″ for
configuration items.

For example, the ISO US English message catalog will be stored as shown below,
using the default location:

246 Administrator’s Guide

AIX 4 /usr/teamc/nls/msg/en_US

HP-UX 10
/opt/teamc/nls/msg/C (which really is a symbolic link to /usr/lib/nls/msg/C)

Solaris /opt/teamc/nls/msg/C (which really is a symbolic link to /usr/lib/nls/msg/C)

OS/2 c:\teamc\nls\msg\enu

Windows NT and 95
c:\Program Files\TeamConnection\nls\msg\enu

List of language-dependent files: The ″nls″ directory (see previous section for the
complete path) contains the following subdirectories and files:

nls/msg/<locale>/
All message catalog files, such as teamcv3.cat; all help files; all resource DLLs
for the GUI that are specific to a language.

nls/doc/<locale>/
All documentation: PDF, HTML, etc.

nls/cfg/<locale>/
All configuration files, such as config.ld, and files for the configurable fields; the
original teamcv3.ini file.

Installation issues for UNIX

During the installation process for TeamConnection in UNIX, it is necessary to select
the appropriate language version to install. The code is not bundled together with the
language sensitive information. That is, there is an individual installable package just for
the language sensitive information that could be installed independently.

Because AIX 4 and HP-UX 10 operating systems already include the explicit support for
the XPG/4 I18N locale model, the TeamConnection installation process will not install
additional files for this matter (as in OS/2 and Windows).

The message catalog that contains the language sensitive information is located by the
executable code by means of the combination of the NLSPATH and LANG environment
variable. By default, this variable is set as follows:

set NLSPATH=/usr/lib/nls/msg/%L/%N

Where:

v %L is a variable that at runtime represents the value of the LANG environment
variable; it must be in uppercase.

v %N is a variable that at runtime represents the name of the message catalog to be
used; it must be in uppercase.

Appendix E. TeamConnection NLS and DBCS considerations 247

Installation issues with OS/2 and Windows

During the installation process for TeamConnection in OS/2 and Windows, it is
necessary to select the appropriate language version to install. The code and the
language sensitive information is bundled together in a package and it is installed
appropriately. That is, there is not an individual package just for the language sensitive
information that can be installed independently.

Because the OS/2 and Windows operating systems do not include at this moment
explicit support for the XPG/4 I18N locale model, the TeamConnection installation
process will install any necessary support for this model.

The message catalog that contains the language sensitive information is located by the
executable code by means of the NLSPATH environment variable. By default, this
variable is set as follows:

set NLSPATH=:\teamc\nls\%N

Where:

v :\teamc represents the appropriate drive and top directory where the
TeamConnection code is installed in your system

v nls is the directory that contains the NLS related files

v %N is a variable that at runtime represents the name of the message catalog to be
used; it must be in uppercase.

Family administration issues

A family should use the same language all the time

Although technically it could be possible for a family to be created using the en_US
locale and then change it later on to another language, we consider that this process
has the potential to cause a lot of confusion with the users, especially for the mapping
of code points.

Therefore, this is treated as a limitation and if the customers try it, it is at their own risk
and we will not help them. However, the customer may decide to delete the family,
change the language by reinstalling the code for Intel and specify the new language, or
to install the new language message catalogs for UNIX and change the LANG variable,
and then create a new family to use the new setting.

This decision affects the arrangement of the subdirectories of a family: there is no
provision in either UNIX or Intel to have language dependent directories inside the
family directory.

The following sections contain examples that will clarify this point.

UNIX: An AIX customer installed the TeamConnection server, using the en_US locale.
The config.ld file (which is language dependent) resides in /usr/lib/nls/cfg/enu/config.ld.

248 Administrator’s Guide

The ″testfam″ TeamConnection family is created, and the config.ld file is copied from
the system directory to the top directory of the family, /home/testfam/config.ld There is
no ″/home/testfam/enu/config.ld″ path.

Intel: An OS/2 customer installed the TeamConnection server, using the en_US locale.
The config.ld file (which is language dependent) resides in
c:\teamc\nls\cfg\enu\config.ld. The ″testfam″ TeamConnection family is created, and the
config.ld file is copied from the system directory mentioned above into the top directory
of the family, c:\testfam\config.ld. Notice that there is no ″c:\testfam\enu\config.ld″ path.

Client runtime issues

A client should use the same language all the time

Although technically it could be possible for a TeamConnection client to be installed with
one language (such as the IBM-850 code page in OS/2 or the en_US locale in AIX) and
then change the language in the middle, this process has the potential to cause a lot of
confusion with the users, specially for the mapping of code points with the teamcv3.ini
file, as explained below.

In the UNIX platforms, thanks to the use of the LANG variable, it would be possible to
install additional message catalogs for other languages and the user could setup the
language to use by setting the variable LANG. However, the teamcv3.ini file for the GUI
will NOT be changed, and this file may contain characters that were valid in the original
setup but that cannot be displayed in the new setup.

Because the Intel platforms do not provide the LANG variable, then it is not possible to
have message catalogs for multiple languages for TeamConnection. This means that if
the customer decides to change the language then it is necessary to reinstall the code
specifying the new language.

The following sections contain examples that will clarify this point.

UNIX:

1. A Japanese AIX customer installs the TeamConnection client using the ja_JP and
en_US message catalogs. The teamcv3.ini files (which are language dependent)
reside in /usr/lib/nls/cfg/ja_JP/teamcv3.ini and /usr/lib/nls/cfg/enu/teamcv3.ini.

2. The customer uses the Japanese GUI for the first time (LANG=ja_JP), and the GUI
detects that the following file does not exist: :$HOME/teamcv3.ini.

3. The customer uses the GUI and creates several entries written in Japanese in the
task list which are stored in the teamcv3.ini file.

4. The customer exits the GUI.

5. The user invokes the GUI again, and the GUI detects that the teamcv3.ini file exists
in $HOME and therefore the GUI uses it, and does not try to overwrite it with the file
in the directory /usr/lib/nls/cfg/ja_JP.

6. The customer decides then to switch the locale to en_US, by setting LANG=en_US,
exits and logs in again.

Appendix E. TeamConnection NLS and DBCS considerations 249

7. The user brings up the English TeamConnection GUI and now the task list shows
entries that may not be legible because their original code points were set with the
ja_JP locale.

Intel:

1. A Japanese OS/2 customer installs the TeamConnection client and specifies the jpn
language only, because she cannot install multiple languages. The code page is
IBM-932. The PATH and the NLSPATH variables point to the jpn directories. The
teamcv3.ini file (which is language dependent) resides in
c:\teamc\nls\cfg\jpn\teamcv3.ini.

2. The customer uses the Japanese GUI for the first time (LANG=jpn), and the GUI
detects that the following file does not exist: c:\os2\teamcv3.ini. The GUI copies the
original teamcv3.ini file from the appropriate jpn directory,
c:\teamc\nls\cfg\jpn\teamcv3.ini, into c:\os2\teamcv3.ini.

3. The customer uses the GUI and creates several entries written in Japanese in the
task list, and this list is stored in the teamcv3.ini file.

4. The customer exits the GUI.

5. The user invokes the GUI again, and the GUI detects that the teamcv3.ini file exists
in c:\os2 and therefore the GUI uses it, and does not try to overwrite it with the file
in the directory c:\teamc\nls\cfg\jpn.

6. The customer decides then to switch the locale to enu, by uninstalling the
TeamConnection client and reinstalling it again specifying now the language enu,
and reboots. The PATH and the NLSPATH variables are updated and they do not
point to the non-existing jpn directories, but point to the new enu directories.

7. If the customer keeps the same code page, IBM-932, then when the user brings up
the English TeamConnection GUI, the task list shows entries that are legible
because their original code points were set with the IBM-932 code page. If the
customer changes the code page, let’s say to IBM-850, then when the user brings
up the English TeamConnection GUI the task list shows entries that may not be
legible because their original code points were set with the IBM-932 code page.

250 Administrator’s Guide

Appendix F. Worksheets

Authority groups worksheet

The following table lists TeamConnection actions. Use this table to record the authority
groups for your family if you are using groups other than those supplied by IBM. Those
TeamConnection actions that cannot be included in an authority group are marked with
information about how they can be performed.

TeamConnection
action

Authority groups for family:_________________

AccessCreate

AccessDelete

AccessRestrict

ApprovalAbstain

ApprovalAccept

ApprovalAssign

ApprovalCreate

ApprovalDelete

ApprovalReject

ApproverCreate

ApproverDelete

BuilderCreate

BuilderDelete

BuilderExtract

BuilderModify

BuilderView

CollisionAccept

CollisionReconc

CollisionReject

CompCreate

CompDelete

CompLink

CompModify

CompRecreate

CompUnlink

CompView

CoreqCreate

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 251

TeamConnection
action

Authority groups for family:_________________

CoreqDelete

DefectAccept

DefectAssign

DefectCancel

DefectClose Automatic action

DefectComment Base authority

DefectDesign

DefectModify

DefectOpen Base authority

DefectReopen

DefectReturn

DefectReview

DefectSize

DefectVerify

DefectView

DriverAssign

DriverCheck

DriverCommit

DriverComplete

DriverCreate

DriverDelete

DriverExtract

DriverFreeze

DriverModify

DriverRefresh

DriverRestrict

DriverView

EnvCreate

EnvDelete

EnvModify

FeatureAccept

FeatureAssign

FeatureCancel

FeatureClose Automatic action

FeatureComment Base authority

252 Administrator’s Guide

TeamConnection
action

Authority groups for family:_________________

FeatureDesign

FeatureModify

FeatureOpen Base authority

FeatureReopen

FeatureReturn

FeatureReview

FeatureSize

FeatureVerify

FeatureView

FixActive

FixAssign

FixComplete

FixCreate

FixDelete

HostCreate Superuser, admin, or owner implicit authority

HostDelete Superuser, admin, or owner implicit authority

MemberCreate

MemberCreateR

MemberDelete

MemberDeleteR

NotifyCreate

NotifyDelete

ParserCreate

ParserDelete

ParserModify

ParserView

PartAdd

PartBuild

PartCheckIn

PartCheckOut

PartChildInfo

PartConnect

PartDelete

PartDeleteForce

PartDisconnect

Appendix F. Worksheets 253

TeamConnection
action

Authority groups for family:_________________

PartExtract

PartForceIn

PartForceOut

PartLink

PartLock

PartLockForce

PartMark

PartModify

PartOverrideR

PartRecreate

PartRecreaForce

PartRename

PartRenameForce

PartResolve Base authority

PartRestrict

PartTouch

PartUndo

PartUndoForce

PartUnlock

PartView

PartViewmsg

PrereqCreate

PrereqDelete

ReleaseCreate

ReleaseDelete

ReleaseExtract

ReleaseLink

ReleaseModify

ReleasePrune

ReleaseRecreate

ReleaseView

Report Base authority

ShadowCreate

ShadowDefine Superuser

ShadowDelete

254 Administrator’s Guide

TeamConnection
action

Authority groups for family:_________________

ShadowDisable

ShadowEnable

ShadowModify

ShadowRedefine Superuser

ShadowSync

ShadowUndefine Superuser

ShadowVerify

ShadowView

SizeAccept

SizeAssign

SizeCreate

SizeDelete

SizeReject

TestAbstain

TestAccept

TestAssign

TestReady Automatic action

TestReject

UserCreate Superuser implicit or admin authority

UserDelete Superuser implicit or admin authority

UserModify Superuser, admin, or owner implicit authority

UserRecreate Superuser implicit or admin authority

UserView

VerifyAbstain

VerifyAccept

VerifyAssign

VerifyReady Automatic action

VerifyReject

WorkAreaAssign

WorkAreaCancel

WorkAreaCheck

WorkAreaCommit

WorkAreaComplet

WorkAreaCreate

WorkAreaFix

Appendix F. Worksheets 255

TeamConnection
action

Authority groups for family:_________________

WorkAreaFreeze

WorkAreaIntegra

WorkAreaModify

WorkAreaRefresh

WorkAreaTest

WorkAreaView

Interest groups worksheet

The following table lists the TeamConnection actions. Use this table to record the
interest groups for your family if you are using groups other than those supplied by IBM.
Those TeamConnection actions that cannot be included in an interest group are marked
with information about how users are notified.

TeamConnection actions

Interest groups for family: _________

AccessCreate .

AccessDelete

AccessRestrict .

ApprovalAbstain

ApprovalAccept

ApprovalAssign

ApprovalCreate

ApprovalDelete

ApprovalReject

ApproverCreate

ApproverDelete

BuilderCreate

BuilderDelete

BuilderExtract No notification

BuilderModify

BuilderView No notification

CollisionAccept

CollisionReconc

CollisionReject

CompCreate New owner implicit notification

CompDelete

256 Administrator’s Guide

TeamConnection actions

Interest groups for family: _________

CompLink

CompModify

CompRecreate

CompUnlink

CompView No notification

CoreqCreate No notification

CoreqDelete No notification

DefectAccept

DefectAssign

DefectCancel

DefectClose

DefectComment

DefectDesign

DefectModify

DefectOpen

DefectReopen

DefectReturn

DefectReview

DefectSize

DefectVerify

DefectView No notification

DriverAssign

DriverCheck No notification

DriverCommit

DriverComplete

DriverCreate

DriverDelete

DriverExtract No notification

DriverFreeze

DriverModify

DriverRefresh No notification

DriverRestrict Owner implicit notification

DriverView No notification

EnvCreate

EnvDelete

Appendix F. Worksheets 257

TeamConnection actions

Interest groups for family: _________

EnvModify

FeatureAccept

FeatureAssign

FeatureCancel

FeatureClose

FeatureComment

FeatureDesign

FeatureModify

FeatureOpen

FeatureReopen

FeatureReturn

FeatureReview

FeatureSize

FeatureVerify

FeatureView No notification

FixActive

FixAssign

FixComplete

FixCreate

FixDelete

HostCreate No notification

HostDelete No notification

MemberCreate

MemberCreateR New owner implicit notification

MemberDelete

MemberDeleteR Owner implicit notification

NotifyCreate No notification

NotifyDelete No notification

ParserCreate

ParserDelete

ParserModify

ParserView No notification

PartAdd

PartBuild owner implicit notification

PartCheckIn

258 Administrator’s Guide

TeamConnection actions

Interest groups for family: _________

PartCheckOut

PartConnect

PartDelete

PartDisconnect

PartExtract No notification

PartForceIn

PartForceOut

PartLink

PartLock

PartLockForce PartLock subscribers

PartMark

PartModify

PartOverrideR

PartRecreaForce PartRecreate subscribers

PartRecreate

PartRename

PartRenameForce PartRename subscribers

PartResolve No notification

PartRestrict

PartTouch No notification

PartUndo

PartUndoForce PartUndo subscribers

PartUnlock

PartView No notification

PartViewmsg No notification

PrereqCreate New owner implicit notification

PrereqDelete Owner implicit notification

ReleaseCreate

ReleaseDelete

ReleaseExtract No notification

ReleaseLink

ReleaseModify

ReleaseRecreate

ReleaseView No notification

Report No notification

Appendix F. Worksheets 259

TeamConnection actions

Interest groups for family: _________

ShadowCreate No notification

ShadowDefine No notification

ShadowDelete No notification

ShadowDisable No notification

ShadowEnable No notification

ShadowModify No notification

ShadowRedefine No notification

ShadowSync No notification

ShadowUndefine No notification

ShadowVerify No notification

ShadowView No notification

SizeAccept

SizeAssign

SizeCreate

SizeDelete

SizeReject

TestAbstain

TestAccept

TestAssign

TestCreate

TestDelete

TestReady Owner implicit notification

TestReject

UserCreate New user implicit notification

UserDelete No notification

UserModify No notification

UserUnDelete No notification

UserView No notification

VerifyAbstain

VerifyAccept

VerifyAssign

VerifyReady Owner implicit notification

VerifyReject

WorkAreaAssign

WorkAreaCancel

260 Administrator’s Guide

TeamConnection actions

Interest groups for family: _________

WorkAreaCheck No notification

WorkAreaCommit

WorkAreaComplet

WorkAreaCreate

WorkAreaExtract

WorkAreaFix

WorkAreaFreeze Owner implicit notification

WorkAreaIntegra

WorkAreaModify

WorkAreaRefresh

WorkAreaTest

WorkAreaView No notification

Configurable processes worksheets

The following worksheets list the TeamConnection subprocesses. Use these worksheets
to record the processes that you have created for your family. Separate worksheets are
provided for component and release processes. For more information on configuring
processes, see “Chapter 8. Configuring family processes” on page 99.

TeamConnection component
subprocesses

Component processes for _____________

dsrDefect

dsrFeature

verifyDefect

verifyFeature

none

TeamConnection release
subprocesses

Release processes for _____________

track

approval

fix

driver

Appendix F. Worksheets 261

TeamConnection release
subprocesses

Release processes for _____________

test

trackfixhold

trackcommithold

tracktesthold

none

262 Administrator’s Guide

Service and Support

VisualAge TeamConnection Services!

VisualAge TeamConnection services offerings will provide customers with the tools to
quickly establish a more productive and efficient development environment. These
services offerings focus on the LAN library component of VisualAge TeamConnection
and on the Repository function of VisualAge TeamConnection.

If you are interested in the VisualAge TeamConnection Services, select the Support
item at:

http://www.software.ibm.com/software/ad/teamcon

VisualAge TeamConnection Support!

If you have a question or a problem, please take a moment to review the Customer
Support section from any of the manuals for the VisualAge TeamConnection product.
Your options for VisualAge TeamConnection support, as described in your License
Information, include the following information (subject to availability).

IBM Lotus Passport Advantage Program

For more information on the IBM Lotus Passport Advantage volume licensing program
that provides customers with a series of contract offerings under which they can acquire
licenses, software subscriptions, and support, go to:

http://www.lotus.com/passportadvantage

DB2 Service Maintenance and Technical Library

To download the latest service maintenance for DB2, use the DB2 Service and Support
on the World Wide Web at:

http://www.software.ibm.com/data/db2/db2tech

Note: Even though DB2 is bundled with VisualAge TeamConnection you should contact
VisualAge TeamConnection Support to report DB2 problems. The licensing for
VisualAge TeamConnection does not entitle you to contact DB2 Support directly.
For a complete and up-to-date source of DB2 information, use the DB2 Product
and Service Technical Library, in English only, on the World Wide Web at:

http://www.software.ibm.com/data/db2/library

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 263

For North American Customers

Electronic Forums

So you may electronically access VisualAge TeamConnection technical information,
exchange messages with other VisualAge TeamConnection users, and receive
information regarding the availability of FixPaks.

IBM TalkLink
Use the TEAMC CFORUM. In the United States, call 1-800-547-1283. For
TalkLink information available via the Internet, go to:

http://www.ibmlink.ibm.com/talklink

CompuServe
From any ! prompt, type GO SOFSOL, then select TeamConnection. Refer to
the enclosed CompuServe brochure for additional information, or call
1-800-848-8199. For CompuServe information available via the Internet, refer
to:

http://www.compuserve.com

Internet
Go to the IBM homepage, http://www.ibm.com. Use the search function with
keyword TeamConnection to go to the VisualAge TeamConnection area.
Access the TeamConnection directory in our ftp site. Use ftp and login as
anonymous to ftp.software.ibm.com. In the directory
ps/products/teamconnection you can find fixes and information related to
VisualAge TeamConnection.

Telephone Support

Direct customer support is provided by the Personal Systems Support Line and by the
AIX Support Line. These fee services enhance customers’ productivity by providing
voice and electronic access to the IBM support organization. They will help answer
questions pertaining to usage, ″how to,″ and suspected software defects for eligible
products.

The following are phone numbers for software support in the US:

v Personal Systems Support Line: 1–800–237–5511

v AIX Support Line: 1–800–CALL-AIX (1–800–225–5249)

In Canada, call 1–800–IBM-SERV (1–800–426–7378).

Note: In the US, 1-800-237-5511 is the Software Support phone number for all IBM
software (390, OS/400, AIX, Personal Systems, etc.). You may call this number
and take the option for OS/2 - DOS support, which then transfers you to
1-800-992-4777 for the Personal Systems (workstation) products, or you may
call 1-800-992-4777 directly.

Obtaining product information packages:

264 Administrator’s Guide

|

v United States: 1-800-IBM-CALL (1-800-426-2255)

v Canada: 1-800-IBM-CALL (1-800-426-2255)

Ordering TeamConnection products:

v United States: 1-800-IBM-CALL (1-800-426-2255)

v Canada: 1-800-IBM-CALL (1-800-426-2255)

TeamConnection education:

v United States:1-800-IBM-TEACh (1-800-426-8322) Canada 1-800-IBM-TEACh
(1-800-426-8322)

While we may not be able to respond to or resolve all problems and questions, your
satisfaction with our products and support is important to us. If you cannot access these
forums, contact your IBM representative. There are several other support offerings
available after purchasing IBM VisualAge TeamConnection.

If you live within the U.S.A., call any of the following numbers:

v 1-800-237-5511 to learn about available service options

v 1-800-IBM-CALL (1-800-426-2255) to order products or get general information

v 1-800-879-2755 to order publications.

Support for Customers Outside North America

For information on how to contact IBM outside of the United States, see Appendix A of
the IBM Software Support Handbook, which can be located by selecting the Service
Offering item at:

http://www.ibm.com/support:

Note: In some countries, IBM-authorized dealers should contact their dealer support
structure instead of the IBM Support Center.

Service and Support 265

266 Administrator’s Guide

Bibliography

IBM VisualAge TeamConnection Enterprise Server library

The following is a list of the TeamConnection publications. For a list of other
publications about TeamConnection, including white papers, technical reports, a product
fact sheet, and the product announcement letter, refer to the IBM VisualAge
TeamConnection Enterprise Server Library home page. To access this home page,
select Library from the IBM VisualAge TeamConnection Enterprise Server home page
at URL http://www.software.ibm.com/ad/teamcon.

v License Information (GC34-4497):

Contains license, service, and warranty information.

v Installation Guide (GC34-4742):

Lists the hardware and software that are required before you can install and use the
IBM VisualAge TeamConnection Enterprise Server product, provides detailed
instructions for installing the TeamConnection server and client.

v Administrator’s Guide (GC34-4551):

Provides instructions for configuring the TeamConnection family server and
administering a TeamConnection family.

v Getting Started with the TeamConnection Clients (SC34-4552):

Tells first-time users how to install the TeamConnection clients on their workstations,
and familiarizes them with the command line and graphical user interfaces.

v User’s Guide (SC34-4499):

A comprehensive guide for TeamConnection administrators and client users that
helps them install and use TeamConnection.

v Commands Reference (SC34-4501):

Describes the TeamConnection commands, their syntax, and the authority required to
issue each command. This book also provides examples of how to use the various
commands.

v Quick Commands Reference (GC34-4500):

Lists the TeamConnection commands along with their syntax.

v Staying on Track with TeamConnection Processes (83H9677):

Poster showing how objects flow through the states defined for each
TeamConnection process.

v The following publications can be ordered as a set (SBOF-8560):

Administrator’s Guide

Getting Started with the TeamConnection Clients

User’s Guide

Commands Reference

Quick Commands Reference

Staying on Track with TeamConnection Processes

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 267

TeamConnection technical reports

The following is a list of technical reports available for TeamConnection. Refer to the
IBM VisualAge TeamConnection Enterprise Server Library home page for the most
up-to-date list of technical reports. To access this home page, select Library from the
IBM VisualAge TeamConnection Enterprise Server home page at URL
http://www.software.ibm.com/ad/teamcon.

29.2147 SCLM Guide to TeamConnection Terminology
29.2196 Using REXX command files with TeamConnection MVS Build Scripts
29.2231 TeamConnection Interoperability with MVS and SCLM
29.2235 Using REXX command files with TeamConnection MVS Build Scripts for PL/I

programs
29.2253 Comparison between CMVC 2.3 and TeamConnection 2
29.2254 Migrating from CMVC 2.3 to TeamConnection 2
29.2267 TeamConnection frequently asked questions: how to do routine operating system

tasks

DB2

The following publications are part of the IBM DB2 Universal Database library of
documents for DB2 administration. DB2 publications are available in HTML format from
the DB2 Product and Service Technical Library at the following URL:

http://www.software.ibm.com/data/db2/library/

v Administration Getting Started (S10J-8154–00)

An introductory guide to basic administration tasks and the DB2 administration tools.

v SQL Getting Started (S10J-8156–00)

Discusses basic concepts of DB2 SQL.

v Administration Guide (S10J-8157–00)

A complete guide to administration tasks and the DB2 administration tools.

v SQL Reference (S10J-8165–00)

A reference to DB2 SQL for programmers and database administrators.

v Troubleshooting Guide (S10J-8169–00)

A guide to identifying and solving problems with DB2 servers and clients and to using
the DB2 diagnostic tools.

v Messages Reference (S10J-8168–00)

Provides detailed information about DB2 messages.

v Command Reference (S10J-8166–00)

Provides information about DB2 system commands and the command line processor.

v Replication Guide (S10J-0999–00)

Describes how to plan, configure, administer, and operate IBM replication tools
available with DB2.

v System Monitor Guide and Reference (S10J-8164–00)

268 Administrator’s Guide

Describes how to monitor DB2 database activity and analyze system performance.

v Glossary

A comprehensive glossary of DB2 terms.

Related publications
v Transmission Control Protocol/Internet Protocol (TCP/IP)

– TCP/IP 2.0 for OS/2: Installation and Administration (SC31-6075)

– TCP/IP for MVS Planning and Customization (SC31-6085)

v MVS

– MVS/XA JCL User’s Guide (GC28-1351)

– MVS/XA JCL Reference (GC28-1352)

– MVS/ESA JCL User’s Guide (GC28-1830)

– MVS/ESA JCL Reference (GC28-1829)

v NLS and DBCS

– AIX 4, General Programming Concepts: Writing and Debugging Programs.
(SC23-2533-02). See chapter 16 ″National Language Support″ for an updated
contents of the AIX 3 material (see below).

– AIX 4, System Management Guide: Operating System and Devices
(SC23-2525-03). See chapter 10, ″National Language Support″ for system tasks.

– AIX Version 3.2 for RISC System/6000, National Language Support (GG24-3850).

– Internationalization of AIX Software, A Programmer’s Guide (SC23-2431).

– National Language Design Guide Volume 1 (SE09-8001-02). This manual
contains very good information on how to enable an application for NLS.

– National Language Design Guide Volume 2 (SE09-8002-02). This manual
provides information on the IBM language codes (consult the ″Language codes″
chapter).

Bibliography 269

270 Administrator’s Guide

Glossary

This glossary includes terms and definitions from
the IBM Dictionary of Computing, 10th edition
(New York: McGraw-Hill, 1993). If you do not find
the term you are looking for, refer to this
document’s index or to the IBM Dictionary of
Computing.

This glossary uses the following cross-references:

Compare to
Indicates a term or terms that have a
similar but not identical meaning.

Contrast with
Indicates a term or terms that have an
opposed or substantially different
meaning.

See also
Refers to a term whose meaning bears a
relationship to the current term.

A

absolute path name. A directory or a part
expressed as a sequence of directories followed
by a part name beginning from the root directory.

access list. A set of objects that controls access
to data. Each object consists of a component, a
user, and the authority that the user is granted or
is restricted from in that component. See also
authority, granted authority, and restricted
authority.

action. A task performed by the TeamConnection
server and requested by a TeamConnection client.
A TeamConnection action is the same as issuing
one TeamConnection command.

agent. See build agent.

alternate version ID. In collision records, the
database ID of the version of a driver, release, or
work area where the conflicting version of a part is
visible.

approval record. A status record on which an
approver must give an opinion of the proposed
part changes required to resolve a defect or
implement a feature in a release.

approver. A user who has the authority to mark
an approval record with accept, reject, or abstain
within a specific release.

approver list. A list of user IDs attached to a
release, representing the users who must review
part changes that are required to resolve a defect
or implement a feature in that release.

attribute. Information contained in a field that is
accessible to the user. TeamConnection enables
family administrators to customize defect, feature,
user, and part tables by adding new attributes.

authority. The right to access development
objects and perform TeamConnection commands.
See also access list, base authority, explicit
authority, granted authority, implicit authority,
restricted authority, and superuser privilege.

B

base authority. The set of actions granted to a
user when a user ID is created within a
TeamConnection family. See also authority.
Contrast with implicit authority and explicit
authority.

base name. The name assigned to the part
outside of the TeamConnection server
environment, excluding any directory names. See
also path name.

base part tree. The base set of parts associated
with a release, to which changes are applied over
time. Each committed driver or work area for a
release updates the base part tree for that
release.

build. The process used to create applications
within TeamConnection.

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 271

build associate. A TeamConnection part that is
not an input to or an output from a build. An
example of such a part is a read.me file.

build cache. A directory that the build processor
uses to enhance performance.

build dependent. A TeamConnection part that is
needed for the compile operation to complete, but
it will not be passed directly to the compiler. An
example of this is an include file. See also
dependencies.

builder. An object that can transform one set of
TeamConnection parts into another by invoking
tools such as compilers and linkers.

build event. An individual step in the build of an
application, such as the compiling of hello.c into
hello.obj.

build input. A TeamConnection part that will be
used as input to the object being built.

build output. A TeamConnection part that will be
generated output from a build, such as an .obj or
.exe file.

build pool. A group of build servers that resides
in an environment. The environment in which
several build servers operate. Typically, several
servers are set up for each environment that the
enterprise develops applications for.

build scope. A collection of build events that
implement a specific build request. See also build
event.

build script. An executable or command file that
specifies the steps that should occur during a
build operation. This file can be a compiler, a
linker, or the name of a .cmd file you have written.

build server. A program that invokes the tools,
such as compilers and linkers, that construct an
application.

build target. The name of the part at the top of
the build tree which is the final output of a build.

TeamConnection uses the build target to
determine the scope of the build. See also build
tree.

build tree. A graphical representation of the
dependencies that the parts in an application have
on one another. If you change the relationship of
one part to another, the build tree changes
accordingly.

C

change control process. The process of limiting
and auditing changes to parts through the
mechanism of checking parts in and out of a
central, controlled, storage location. Change
control for individual releases can be integrated
with problem tracking by specifying a process for
the release that includes the tracking subprocess.

check in. The return of a TeamConnection part
to version control.

check out. The retrieval of a version of a part
under TeamConnection control. In non-concurrent
releases, the check out operation does not allow a
second user to check out a part until the first user
has checked it back in.

child component. Any component in a
TeamConnection family, except the root
component, that is created in reference to an
existing component. The existing component is the
parent component, and the new component is the
child component. A parent component can have
more than one child component, and a child
component can have more than one parent
component. See also component and parent
component.

child part. Any part in a build tree that has a
parent defined. A child part can be input, output,
or dependent. See also part and parent part.

client. A functional unit that receives shared
services from a server. Contrast with server.

collision record. A status record associated with
a work area or driver, a part, and one of the
following:

272 Administrator’s Guide

v The work area or driver’s release

v Another work area

TeamConnection generates a collision record
when a user attempts to replace an older version
of a part with a modified version, another user has
already modified that part, and the first user’s
modification is not based on this latest version of
the part.

command. A request to perform an operation or
run a program from the command line interface. In
TeamConnection, a command consists of the
command name, one action flag, and zero or
more attribute flags.

command line. (1) An area on the Tasks window
or in the TeamConnection Commands window
where a user can type TeamConnection
commands. (2) An area on an operating system
window where you can type TeamConnection
commands.

committed version. The revision of a part that is
visible from the release.

common part. A part that is shared by two or
more releases, and the same version of the part is
the current version for those releases.

comparison operator. An operator used in
comparison expressions. Comparison operators
used in TeamConnection are > (greater than), <
(less than), >= (greater than or equal to), <= (less
than or equal to), = (equal to), and <> (different
from).

component. A TeamConnection object that
organizes project data into structured groups, and
controls configuration management properties.
Component owners can control access to data
and notification of TeamConnection actions.
Components exist in a parent-child hierarchy, with
descendant components inheriting access and
notification information from ancestor components.
See also access list and notification list.

concurrent development. Several users can
work on the same part at the same time.
TeamConnection requires these users to reconcile

their changes when they commit or integrate their
work areas and drivers with the release. Contrast
with serial development. See also work area.

configuration management. The process of
identifying, managing, and controlling software
modules as they change over time.

connecting parts. The process of linking parts
so that they are included in a build.

context. The current work area or driver used for
part operations.

corequisite work areas. Two or more work
areas designated as corequisites by a user so that
all work areas in the corequisite group must be
included as members in the same driver, before
that driver can be committed. If the driver process
is not used in the release, then all corequisite
work areas must be integrated by the same
command. See also prerequisite work areas.

current version. The last visible modification of
a part in a driver, release, or work area.

current working directory. (1) The directory that
is the starting point for relative path names. (2)
The directory in which you are working.

D

daemon. A program that runs unattended to
perform a standard service. Some daemons are
triggered automatically to perform their task;
others operate periodically.

database. A collection of data that can be
accessed and operated upon by a data
processing system for a specific purpose.

default. A value that is used when an alternative
is not specified by the user.

default query. A database search, defined for a
specific TeamConnection window, that is issued
each time that TeamConnection window is
opened. See also search.

Glossary 273

defect. A TeamConnection object used to
formally report a problem. The user who opens a
defect is the defect originator.

delete. If you delete a development object, such
as a part or a user ID, any reference to that object
is removed from TeamConnection. Certain objects
can be deleted only if certain criteria are met.
Most objects that are deleted can be re-created.

delta part tree. A directory structure representing
only the parts that were changed in a specified
place.

dependencies. In TeamConnection builds there
are two types of dependencies:

v automatic . These are build dependencies that
a parser identifies.

v manual . These are build dependencies that a
user explicitly identifies in a build tree.

See also build dependent.

descendant. If you descendant a development
object, such as, a part or a user ID, any reference
to that object is removed from TeamConnection.
Certain objects can be descendant only if certain
criteria are met. Most objects that are
descendants can be re-created.

disconnecting parts. The process of unlinking
parts so that they are not included in a build.

driver. A collection of work areas that represent
a set of changed parts within a release. Drivers
are only associated with releases whose
processes include the track and driver
subprocesses.

driver member. A work area that is added to a
driver.

E

end user. See user.

environment. (1) A user-defined testing domain
for a particular release. (2) A defect field, in which

case it is the environment where the problem
occurred. (3) The string that matches a build
server with a build event.

environment list. A TeamConnection object
used to specify environments in which a release
should be tested. A list of environment-user ID
pairs attached to a release, representing the user
responsible for testing each environment. Only
one tester can be identified for an environment.

explicit authority. The ability to perform an
action against a TeamConnection object because
you have been granted the authority to perform
that action. Contrast with base authority and
implicit authority.

extract. A TeamConnection action you can
perform on a builder, part, driver or release
builder. An extraction results in copying the
specified builder, part, or parts contained in the
driver or release to a client workstation.

F

family. A logical organization of related data. A
single TeamConnection server can support
multiple families. The data in one family cannot be
accessed from another family.

family administrator. A user who is responsible
for all nonsystem-related tasks for one or more
TeamConnection families, such as planning,
configuring, and maintaining the TeamConnection
environment and managing user access to those
families.

family server. A workstation running the
TeamConnection server software.

FAT. See file allocation table.

feature. A TeamConnection object used to
formally request and record information about a
functional addition or enhancement. The user who
opens a feature is the feature originator.

file. A collection of data that is stored by the
TeamConnection server and retrieved by a path
name. Any text or binary file used in a

274 Administrator’s Guide

development project can be created as a
TeamConnection file. Examples include source
code, executable programs, documentation, and
test cases.

file allocation table (FAT). The DOS-, OS/2-,
Windows 95-, and Windows NT-compatible file
system that manages input, output, and storage of
files on your system. File names can be up to 8
characters long, followed by a file extension that
can be up to 3 characters.

fix record. A status record that is associated
with a work area and that is used to monitor the
phases of change within each component that is
affected by a defect or feature for a specific
release.

freeze. The freeze action saves changed parts to
the work area. Thus, TeamConnection takes a
snapshot of the work area, including all of the
current versions of parts visible from that work
area, and saves this image of the system. The
user can always come back to this stage of
development in the work area. Note, however, that
a freeze action does not make the changes visible
to the other people working in the release.
Compare with refresh.

full part tree. A directory structure representing
a complete set of active parts associated with the
release.

G

Gather. A tool to organize files for distribution
into a specified directory structure. This tool can
be used as a prelude to further distribution, such
as using CD-ROM or through electronic means
like NetView DM/2. It can also be used by itself for
distributing file copies to network-attached file
systems.

GID. A number which uniquely identifies a file’s
group to a UNIX system.

granted authority. If an authority is granted on
an access list, then it applies for all objects
managed by this component and any of its
descendants for which the authority is not

restricted. See also access list, authority, and
inheritance. Contrast with restricted authority.

graphical user interface (GUI). A type of
computer interface consisting of a visual metaphor
of a real-world scene, often as a desktop. Within
that scene are icons, representing actual objects,
that the user can access and manipulate with a
pointing device.

GUI. Graphical user interface.

H

high-performance file system (HPFS). In the
OS/2 operating system, an installable file system
that uses high-speed buffer storage, known as a
cache, to provide fast access to large disk
volumes. The file system also supports the
existence of multiple, active file systems on a
single personal computer, with the capacity of
multiple and different storage devices. File names
used with HPFS can have as many as 254
characters.

host. A host node, host computer, or host
system.

host list. A list associated with each
TeamConnection user ID that indicates the client
machine that can access the family server and act
on behalf of the user. The family server uses the
list to authenticate the identity of a client machine
when the family server receives a command. Each
entry consists of a login, a host name, and a
TeamConnection user ID.

host name. The identifier associated with the
host computer.

HPFS. See high-performance file system.

I

implicit authority. The ability to perform an
action on a TeamConnection object without being
granted explicit authority. This authority is

Glossary 275

automatically granted through inheritance or object
ownership. Contrast with base authority and
explicit authority.

import. To bring in data. In TeamConnection, to
bring selected items into a field from a matching
TeamConnection object window.

inheritance. The passing of configuration
management properties from parent to child
component. The configuration management
properties that are inherited are access and
notification. Inheritance within each
TeamConnection family or component hierarchy is
cumulative.

integrated problem tracking. The process of
integrating problem tracking with change control to
track all reported defects, all proposed features,
and all subsequent changes to parts. See also
change control.

interest group. The list of actions that trigger
notification to the user IDs associated with those
actions listed in the notification list.

J

job queue. A queue of build scopes. One job
queue exists for each TeamConnection family.

L

local version ID. In collision records, the
database ID of the version of the current work
area.

lock. An action that prevents editing access to a
part stored in the TeamConnection development
environment so that only one user can change a
part at a time.

login. The name that identifies a user on a
multi-user system, such as AIX or HP-UX, Solaris,
or Windows NT. In OS/2 and Windows 95, the
login value is obtained from the TC_USER
environment variable.

M

map. The process of reassigning the meaning of
an object.

metadata. In databases, data that describe data
objects.

N

name server. In TCP/IP, a server program that
supplies name-to-address translation by mapping
domain names to Internet addresses.

National Language Support (NLS). The
modification or conversion of a United States
English product to conform to the requirements of
another language or country. This can include the
enabling or retrofitting of a product and the
translation of nomenclature, MRI, or
documentation of a product.

Network File System (NFS). The Network File
System is a program that enables you to share
files with other computers in networks over a
variety of machine types and operating systems.

notification list. An object that enables
component owners to configure notification. A list
attached to a component that pairs a list of user
IDs and a list of interest groups. It designates the
users and the corresponding notification interest
that they are being granted for all objects
managed by this component or any of its
descendants.

notification server. A server that sends
notification messages to the client.

NTFS. NT file system.

NVBridge. A tool for automatic electronic
distribution of TeamConnection software
deliverables within a NetView DM/2 network.

O

operator. A symbol that represents an operation
to be done. See also comparison operators.

276 Administrator’s Guide

originator. The user who opens a defect or
feature and is responsible for verifying the
outcome of the defect or feature on a verification
record. This responsibility can be reassigned.

owner. The user who is responsible for a
TeamConnection object within a TeamConnection
family, either because the user created the object
or was assigned ownership of the object.

P

parent component. All components in each
TeamConnection family, except the root
component, are created in reference to an existing
component. The existing component is the parent
component. See also child component and
component.

parent part. Any part in a build tree that has a
child defined. See also part and child part.

parser. A tool that can read a source file and
report back a list of dependencies of that source
file. It frees a developer from knowing the
dependencies one part has on other parts to
ensure a complete build is performed.

part. A collection of data that is stored by the
family server and retrieved by a path name. They
include text objects, binary objects, and modeled
objects. These parts can be stored by the user or
the tool, or they can be generated from other
parts, such as when a linker generates an
executable file.

path name. The name of the part under
TeamConnection control. A path name can be a
directory structure and a base name or just a base
name. It must be unique within each release. See
also base name.

pool. See build pool.

pop-up menu. A menu that, when requested,
appears next to the object it is associated with.

prerequisite work areas. If a part is changed to
resolve more than one defect or feature, the work
area referenced by the first change is a

prerequisite of the work area referenced by later
changes. A work area is a prerequisite to another
work area if:

v Part changes are checked in, but not
committed, for the first work area.

v One or more of the same parts are checked
out, changed, and checked in again for the
second work area.

problem tracking. The process of tracking all
reported defects through to resolution and all
proposed features through to implementation.

process. A combination of TeamConnection
subprocesses, configured by the family
administrator, that controls the general movement
of TeamConnection objects (defects, features,
work areas, and drivers) from state to state within
a component or release. See also subprocess and
state.

Q

query. A request for information from a
database, for example, a search for all defects
that are in the open state. See also default query
and search.

R

raw format. Information retrieved on the report
command that has the vertical bar delimiter
separating field information, and each line of
output corresponds to one database record.

refresh. This TeamConnection action updates a
work area with any changes from the release, and
it also freezes the work area, if it is not already
frozen.

relative path name. The name of a directory or
a part expressed as a sequence of directories
followed by a part name, beginning from the
current directory.

release. A TeamConnection object defined by a
user that contains all the parts that must be built,
tested, and distributed as a single entity.

Glossary 277

restricted authority. The limitation on a user’s
ability to perform certain actions at a specific
component. Authority can be restricted by the
superuser, the component owner, or a user with
AccessRestrict authority. See also authority.

root component. The initial component that is
created when a TeamConnection family is
configured. All components in a TeamConnection
family are descendants of the root component.
Only the root component has no parent
component. See also component, child
component, and parent component.

S

search. To scan one or more data elements of a
set in a database to find elements that have
certain properties.

serial development. While a user has parts
checked out from a work area, no one else on the
team can check out the part. The user develops
new material without interacting with other
developers on the project. TeamConnection
provides the opportunity to hold the part until the
user is sure that it integrates with the rest of the
application. Thus, the lock is not released until the
work area as a whole is committed. Contrast with
concurrent development. See also work area.

server. A workstation that performs a service for
another workstation.

shadow. A collection of parts in a filesystem that
reflects the contents of a TeamConnection
workarea, driver, or release.

shared part. A part that is contained in two or
more releases.

shell script. A series of commands combined in
a file that carry out a function when the file is run.

SID. The name of a version of a driver, release,
or work area.

sizing record. A status record created for each
component-release pair affected by a proposed
defect or feature. The sizing record owner must

indicate whether the defect or feature affects the
specified component-release pair and the
approximate amount of work needed to resolve
the defect or implement the feature within the
specified component-release pair.

stanza format. Data output generated by the
Report command in which each database record
is a stanza. Each stanza line consists of a field
and its corresponding values.

state. Work areas, drivers, features, and defects
move through various states during their life
cycles. The state of an object determines the
actions that can be performed on it. See also
process and subprocess.

subprocess. TeamConnection subprocesses
govern the state changes for TeamConnection
objects. The design, size, review (DSR) and verify
subprocesses are configured for component
processes. The track, approve, fix, driver, and test
subprocesses are configured for release
processes. See also process and state.

superuser. This privilege lets a user perform any
action available in the TeamConnection family.

system administrator. A user who is
responsible for all system-related tasks involving
the TeamConnection server, such as installing,
maintaining, and backing up the TeamConnection
server and the database it uses.

T

task list. The list of tasks displayed in the Tasks
window. The user can customize this list to issue
requests for information from the server. Tasks
can be added, modified, or deleted from the lists.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

TeamConnection client. A workstation that
connects to the TeamConnection server by a
TCP/IP connection and that is running the
TeamConnection client software.

278 Administrator’s Guide

TeamConnection part. A part that is stored by
the TeamConnection server and retrieved by a
path name, release, type, and work area. See also
part, common part, and type.

TeamConnection superuser. See superuser.

tester. A user responsible for testing the
resolution of a defect or the implementation of a
feature for a specific driver of a release and
recording the results on a test record.

test record. A status record used to record the
outcome of an environment test performed for a
resolved defect or an implemented feature in a
specific driver of a release.

track subprocess. An attribute of a
TeamConnection release process that specifies
that the change control process for that release
will be integrated with the problem tracking
process.

Transmission Control Protocol/Internet
Protocol (TCP/IP). A set of communications
protocols that support peer-to-peer connectivity
functions for both local and wide area networks.

type. All parts that are created through the
TeamConnection GUI or on the command line will
show up in reports with the type of TCPart as the
part type. The TeamConnection GUI and
command line can only check in, check out, and
extract parts of the type TCPart.

U

user exit. A user exit allows TeamConnection to
call a user-defined program during the processing
of TeamConnection transactions. User exits
provide a means by which users can specify
additional actions that should be performed before
completing or proceeding with a TeamConnection
action.

user ID. The identifier assigned by the system
administrator to each TeamConnection user.

V

verification record. A status record that the
originator of a defect or a feature must mark
before the defect or feature can move to the
closed state. Originators use verification records to
verify the resolution or implementation of the
defect or feature they opened.

version. (1) A specific view of a driver, release,
or work area. (2) A revision of a part.

version control. The storage of multiple
versions of a single part along with information
about each version.

view. An alternative and temporary
representation of data from one or more tables.

W

work area. An object in TeamConnection that
you create and associate with a release. When
the work area is created, you see the most current
view of the release and all the parts that it
contains. You can check out the parts in the work
area, make modifications, and check them back
into the work area. You can also test the
modifications without integrating them. Other users
are not aware of the changes that you make in the
work area until you integrate the work area to the
release. While you work on files in a work area,
you do not see subsequent part changes in the
release until you integrate or refresh your work
area.

working part. The checked-out version of a
TeamConnection part.

Y

year 2000 ready. IBM VisualAge
TeamConnection Enterprise Server is Year 2000
ready. When used in accordance with its
associated documentation, TeamConnection is
capable of correctly processing, providing and/or
receiving date data within and between the
twentieth and twenty-first centuries, provided that
all products (for example, hardware, software and

Glossary 279

firmware) used with the product properly exchange
accurate date data with it.

280 Administrator’s Guide

Index

A
access command

creating example 76
access list 74
actions

Show Authority Actions window 74
Show Interest Actions window 80
user exit parameters for 191

Add Host window 69
Add Notification window 81
age utility, for defects and features 128
APP_CTL_HEAP_SZ 32, 144
APPLHEAPSZ 31
approval subprocess 55
audit log

cleaning up 136
description of 130
example of 130
information contained in 131

authorit.ld 166
authority

basic
reloading 166
verify loading of 166

example of granting 70
granting to users 74
inheritance of 75
instructions for granting and restricting 76
planning for 70
Remove Access window 76
restricting 71, 76
types of 71

authority groups
Authority Group Settings window 73
creating from command line 165
creating or changing 72
definition of 72
display list of 74
worksheet 251

Authority Groups Settings page 73
authority table 165
automatic pruning of work areas 52

B
backing up the database 137
base authority 71
BUFFPAGE 31
build action 6
build administrator 23
build function

definition of 11

build function (continued)
keeping build output versions 52

C
CATALOGCACHE_SZ 32, 144
change control 3
check-in action 6
check-out action 6
client

definition 5
command line interface

configuring processes 168
creating authority groups 165
creating interest groups 167
starting family server 44
starting notification server 45

commands
fhchdf 164
fhcirt 163
fhclauth 166
fhclcnfg 172, 173
fhclintr 168
fhclproc 170
notifyd 45
sendmail 42
tcadmin 33
tccleanu 136
tclicmon 150
teamcd 44

component command
example of creating 59

Component Process Settings window 100
components

creating 59
definition of 7
example of hierarchy 7
example of using processes 57
information stored about 7
list of processes 54
list of subprocesses 54
naming 50
organizing hierarchy 47
ownership 49
planning 47
planning processes for 54
processes, configuring 168

comproc.ld 168
concepts of

TeamConnection 3
concurrent development

difference from serial 52

© Copyright IBM Corp. 1992, 1995, 1996, 1997, 1998 281

config.ld 170
config table

column descriptions 171
editing the config.ld file 170
modifying 170
reloading 172, 173
verify loading of 173

ConfigPartView 85, 93
configurable field dependencies 87
configurable processes, worksheet 261
configuration management 3
configuring

fields
changing field types 85
changing field values 85
creating or changing 89
deleting 88, 92
displaying properties of 92

processes
about 99
editing the .ld files 168
reloading the config table 170
using the GUI 100

user exits 111
worksheet 261

create action 6
Create Components window 59
Create Releases window 60
Create User window 66

D
daemon

number of 41
database

backing up 137
controlling size of 52
creating with fhcirt 163
size restriction 52

DB2 configuration parameters 31
DB2 database administration tasks 24
DB2 database maintenance 127
DB2 instances 30
DB2 naming conventions 30
DBHEAP 31, 32, 144
default component process 54
defect.fmt 174
defects

changing age of 128
definition of 9

dependent configurable field 87
development component process 54
development mode

selecting serial or concurrent 52
DLCHKTIME 31
driver configurable field 87

driver member
definition of 56

driver subprocess 55
definition of 55
example of 58
how to use 58

drivers
definition of 9

dsrDefect subprocess 54
dsrFeature subprocess 54

E
edit action 6
emergency_fix component process 54
ENV=() 180
environment variables 225

setting 231
used for trace 136

error log 129
errors 129, 130
examples of

audit log 130
changing processes 57
client/server network 4
component hierarchy 7, 48, 50
driver subprocess 58
granting authority to users 70
linking releases 61
release-component relationship 51
report formats 176
showing part/release/component relationship 8
stanza report 93
table format 96
user exit program 107

explicit authority 71
extract action 6

F
family

creating
using fhcirt command 163
using GUI 32

definition of 5
planning 29

family administrator
responsibilities 23
tasks 163

changing report formats 174
configuring processes 168
creating a family 163
creating an initial superuser 164
creating or modifying authority groups 165
creating or modifying interest groups 167
defining configurable field types 170
editing authorit.ld 165

282 Administrator’s Guide

family administrator (continued)
tasks (continued)

editing comproc.ld 168
editing interest.ld 167
editing relproc.ld 168
editing userExit 178
license monitoring 150
reloading configurable process tables 170
reloading the authority table 166
reloading the config table 172, 173
reloading the interest table 167
setting up user exits 178

family server
specifying daemons 41
starting 42
stopping 46

Family Servers window 145
Family Settings page 34
feature.fmt, editing 174
features

changing age of 128
definition of 9

fhcfupdv 173
fhchdf command 164
fhcirt command 163
fhclauth command 166
fhclcnfg command 172, 173
fhclintr command 168
fhclproc command 168, 170
Field Type window 86
field types

creating or changing 85
fields

configurable 83
changing field types 85
changing field values 85
conditions of 88
creating, using GUI 89
deleting 88, 92
displaying properties of 92
modifying, using GUI 89

files
authorit.ld 165
comproc.ld 168
config.ld 170
defect.fmt 174
feature.fmt 174
interest.ld 167
part.fmt 174
relproc.ld 168
user.fmt 174
userExit 178

fix subprocess 55

G
GUI

family administrator
to add user exit programs 111
to change authority groups 72
to change configurable field types 85
to change configurable processes 100
to change interest groups 79
to change report formats 94
to change table formats 96
to create family 32
to create or change configurable fields 89
to start family server 42
to start notification server 42
to stop family server 46
to stop notification server 46

H
hierarchy

component example 7, 48
component ownership example 50
release-component relationship 51

host command
creating example 69

host lists
Add Host window 69
creating entries 69
planning for 68

host-only security 36

I
implicit authority 71
Interest Group Settings window 79
interest groups

creating
using command line 167
using GUI 78

definition of 78
display list of 80
Interest Group Settings window 79
worksheet 256

interest.ld 167
interest table

reloading 167
verify loading of 168

interfaces
description of 5

L
LANG 225
license monitoring 150
LOCKLIST 32, 144
LOGFILSIZ 31

Index 283

login manager
global 65
individual 65

LOGPRIMARY 31
LOGSECOND 31

M
mail exit routines 42
mail facility 36, 40, 42
maintaining the DB2 database 25
maintenance component process 54
manual shadowing 120
MAXAPPLS 32, 144
monitor command 147
monitoring server daemons 145

N
naming

components 50
releases 53

network 4
NLSPATH 225
notification

Add Notification window 81
adding for users 80
instructions for adding 81
planning for 77
restricting 80
setting up mail facility 36, 40, 42

notification list 80
notification server

starting 42
stopping 46

notify command
example of 81

notifyd command 45

P
packaging

definition of 11
part.fmt 174
parts

definition 6
password-or-host security 36
passwords 36, 37, 67, 165
PATH 225
planning

component hierarchy 47
for authority to access data 70
for host lists 68
for notification 77
for user access 70
for user IDs 50, 63
planning 53

preship component process 54

processes
configuring 99
definition of 9
example of using 57
for components

definition of 54
shipped 54
subprocesses 54

for releases
definition of 55
shipped 56
subprocesses 55

planning 53
worksheet 261

properties of shadows 118
prototype component process 54
pruning 52

R
release command

creating example 61
Release Configurable Fields window 90
release management 3
release process attributes 56
releases

creating 60
creating from an old release 61
definition of 7
example of linking releases 61
example of relationship with other objects 8
example of using processes 57
list of processes 56
list of subprocesses 55
naming 53
planning 50
planning processes for 55
processes, configuring 168
selecting serial or concurrent development 52

relproc.ld 168
Remove Access window 76
reports

changing format of 93
editing .fmt files 174
using GUI 94, 96

description of format sections 175
example of format 176
table format example 96

resetAge utility 129
return codes

from user exit program 104
root component

owner 49

284 Administrator’s Guide

S
sample files shipped

mail exit routines 42
security 37, 67, 165
sendmail command 42
serial development

difference from concurrent 52
server daemon monitor 145
servers

definition 5
family server

definition 5
specifying daemons 41
starting 42

notification server 42
Settings notebook

Family Properties notebook 34
shadow actions 120
shadow types 117
shadows 117
Show Authority Actions window 74
Show Interest Actions window 80
stanza report

changing format of 93
example of 93

Stanza View Format Settings page 94
starting

family server 42
notification server 42

subprocesses
for components 54
for releases 55
using driver subprocess 58

superuser
creating others 67
creating using fhchdf 164
definition of 5, 71

synchronous shadowing 120
system administrator, responsibilities 23

T
table report

changing format of 96
displaying 96
example of 96

Table View Format Settings page 96
TargetView 85, 93
tasks

family administrator 40
TC_BECOME 225

setting for superuser access 67
TC_BUILDPOOL 225
TC_CASESENSE 225
TC_COMPONENT 225

TC_DBPATH 45, 164, 225
TC_FAMILY 225, 231
TC_MAKEIMPORTRULES 225
TC_MAKEIMPORTTOP 225
TC_MAKEIMPORTVERBOSE 225
TC_MIGRATERULES 225
TC_NOTIFY_DAEMON 44, 45, 225
TC_RELEASE 225
TC_TOP 225
TC_TRACE 225
TC_TRACEFILE 225
TC_TRACESIZE 225
TC_USER 225
TC_WORKAREA 225
tcadmin command 33
tccleanu command 136
tclicmon command 150
TCP/IP

sendmail command 42
tcqry 159
tcupdb 160
teamcd command 44
TeamConnection

concepts of 3
introducing 3

test component process 54
test subprocess 56
trace 136
track subprocess 55
trackcommithold 56
trackfixhold 56
tracktesthold 56

U
user command

creating example 67
User Exit parameters settings page 114
User Exit Settings page 111
user exits

configuring 111
customizing parameters for 180
editing userExit file 178
example of 107
nonzero return codes 104
parameters of 191
tips for writing 104

user.fmt 174
user IDs

creating 66
initial superuser 164
planning for 63

user management wizard 66
userExit file 103
users

notification 77

Index 285

users (continued)
preparing for 63
to have data access 70

V
verifyDefect subprocess 54
verifyFeature subprocess 54
version control 3

W
window examples

Add Host 69
Add Notification 81
Authority Group Settings window 73
Component Process Settings 100
Configurable Fields for Defects Settings 90
Configurable Fields Settings 86
Create Components 59
Create Releases 60
Create User 66
Family Settings 34
Interest Groups 79
Remove Access 76
Show Authority Actions 74
Show Interest Actions 80
Stanza View Format Settings 94
Table View Format Settings 96
User Exit parameters settings page 114
User Exit Settings 111

wizard, user management 66
work area

automatic pruning of 52
definition of 8
things you can do with 8

286 Administrator’s Guide

Readers’ Comments — We’d Like to Hear from You

IBM VisualAge TeamConnection Enterprise Server
Administrator’s Guide
Version 3.0

Publication No. SC34-4551-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it

believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC34-4551-01

SC34-4551-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg 062
P.O. Box 12195
Research Triangle Park, NC

27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Part Number: 30L9312
Program Number: 5622-717

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4551-01

30
L9

31
2

