
Building and packaging the CMVC Server/Client for UNIX

Document Number TR 29.3408

Angel Rivera

CMVC Customer Support
IBM Software Solutions

Research Triangle Park, North Carolina, USA
Copyright (C) 2001, IBM

All rights reserved.

DISCLAIMER:

This technical report is not an official publication from the CMVC group. The author is solely
responsible for its contents.

ii Building CMVC for UNIX

 ABSTRACT

The purpose of this technical report is to provide a real example of the use of CMVC for
developing, maintaining, building and packaging the CMVC Server and Client (line commands
and GUI) for UNIX, which encompasses several operating systems and database manage-
ment systems. This example illustrates the complexity associated with the development of
applications in heterogeneous environments.

 ITIRC KEYWORDS

 � CMVC

 � UNIX

 � Building

 � Packaging

 ABSTRACT iii

iv Building CMVC for UNIX

ABOUT THE AUTHOR

 ANGEL RIVERA

Mr. Rivera is an Advisory Software Engineer and team lead for the CMVC Direct Customer
Support team. He joined IBM in 1989 and since then has worked in the development and
support of library systems.

Mr. Rivera has an M.S. in Electrical Engineering from The University of Texas at Austin, and
B.S. in Electronic Systems Engineering from the Instituto Tecnológico y de Estudios
Superiores de Monterrey, México.

 ABOUT THE AUTHOR v

vi Building CMVC for UNIX

 CONTENTS

ABSTRACT . iii
ITIRC KEYWORDS . iii

ABOUT THE AUTHOR . v
Angel Rivera . v

Figures . x

Building and packaging CMVC for UNIX . 1
Disclaimer . 2

Challenges related with heterogeneous environments . 3
Maintaining all needed combinations of hardware and software 3
Role of 'build' userid and exported directory . 3

Standardize the location of ksh to /usr/bin/ksh . 5
Identifying the operating system . 5
Shared .profile . 7

Using a bulletin to communicate news (message-of-the-day) 7

Overall process with CMVC . 9
Families, Components and Releases . 9
Process model . 10
Project lead creates components and releases . 10
Handling defects and features . 11
Developers work with files using tracks (Code and Unit Testing) 11
Preparing the code for Function Verification Test (FVT) . 12

Backing out a faulty FVT driver . 13
Dealing with Tracks/Features during FVT . 14
Dealing with defects created during FVT . 15

Severities for defects . 15

Preparing the builds . 17
General assumptions . 17
One-time only activities . 17

Create CMVC family 'build' to be used with DB2 . 17
Create necessary links . 18

Install the CMVC client . 19
Extract the release "tools231" . 19

 Contents vii

Creation of the Build/Ship/Package tree . 20
Estimated time for build and packaging . 20

Estimated time for all combinations . 21

Building the code . 23
Overview of the whole process . 23
Location of the source code . 25
Build/Ship/Package directory structure . 25

Top directory structure - created via shell script . 25
Source directory structure - created by extracting release 'cs231' 26
Install directory structure - created by extracting release 'inst231' 28
Bottom directory structure - created by doing make with 'ship' 29

Activities to be done per each version, release or modification 30
Files that need to be modified due to changes in Copyright or VRM 30
Files that need to be modified when adding new files . 34

Preparation for the Build . 34
Process Tracks, Levels and Level Members . 34
Extraction of the tools for the build and packaging process 34

Building the CMVC Server and Line Commands . 37
Complete cleanup of the Build tree . 37

Cleanup of the previous build . 37
Extraction of the source files . 37

Extraction using Release or Level Extract . 38
Building the code . 39
Miscellaneous notes . 39

Notes on the MAKE.cmvc shell script . 39
Files affected by different MAKE.cmvc -c options . 40

Making a DEBUG driver . 41
Making an FVT driver . 42
Making a BETA driver . 42
Making a Gold driver . 42

Gathering the shippable files (ship step) . 42
Beta installation . 43
Known building problems . 43

If the build fails with generic problems . 43
If the build fails for AIX . 43
If the build fails for HP-UX . 44
If the build fails for Solaris . 44
Known Problems when Testing the code . 45

Building the CMVC GUI . 47
Build/Ship/Package directory structure for the GUI . 47

viii Building CMVC for UNIX

Preparation for the build . 47
Complete cleanup of the build tree . 48
Extraction of the source files . 48

Extraction using Release or Level Extract . 48
Building the code . 49

Cleanup of object modules and message catalogs . 49
Considerations before building . 49

Making a DEBUG driver . 49
Making an FVT driver . 49
Making a BETA driver . 50
Making a Gold driver . 50

Building the GUI . 50
Known build problems . 51

Known build problems for Solaris . 52
Copying the output files into the ship directory . 52
Performing a sanity test (based on a pseudo-installation) 52

Packaging the CMVC server, line commands and GUI . 53
Overview of packaging for the Server . 53
Overview of packaging for the Client (line commands and GUI) 54

Standalone files . 54
Preparing AIX smit installp images . 56
Preparing the files to generate the installation images . 57
Generating installation images in tar format . 57
Collect the installation files in a distribution media . 58

Appendix A. Introduction to the checklists . 61
Miscellaneous notes . 61

Appendix B. CMVC for UNIX, build and package status checklist 63

Appendix C. CMVC GUI for UNIX, Build and Package Checklist 65

Appendix D. CMVC Client/Server UNIX, Build and Package Checklist 67

Appendix E. Bibliography . 69
How to get electronic copies of manuals and technical reports 69

Internet . 69

Appendix F. Copyrights, Trademarks and Service marks 71

 Contents ix

 FIGURES

1. get_opsys(): Shell script to find out name of operating system 6
2. motd: Shell script to edit and view the message-of-the-day 8
3. Top directory structure - created manually via script . 25
4. Source directory structure - created by release 'cs231' (1 of 2) 26
5. Source directory structure - created by release 'cs231' (2 of 2) 27
6. Bottom directory structure - created by release 'inst231' 28
7. Bottom directory structure - created by doing make with 'ship' 29
8. Header file with service keywords for the what command 31
9. Source file with service keywords for the what command 32

10. Files affected by different MAKE.cmvc -c options, part 1 40
11. Files affected by different MAKE.cmvc -c options, part 2 41
12. CMVC GUI for UNIX, Build and Package Checklist, Level: _____ 65
13. CMVC Client/Server UNIX, Build and Package Checklist, Level: ____ 67

x Building CMVC for UNIX

BUILDING AND PACKAGING CMVC FOR UNIX

The purpose of this technical report is to provide a real example of the use of CMVC for
developing, maintaining, building and packaging the CMVC Server and Client (line commands
and GUI) for UNIX, which encompasses several operating systems and database manage-
ment systems. This example illustrates the complexity associated with the development of
applications in heterogeneous environments.

This document describes the challenges encountered when developing in heterogeneous envi-
ronments and how we cope with them. It also describes the development process that we
used with CMVC for the development of the application.

Then, in order to give you the extent of the complexity associated with the development of an
application in heterogeneous environments, the rest of this document is dedicated to the pre-
requisites, configuration, building and packaging the CMVC Client and Server for UNIX.

CMVC for UNIX is made available for the following operating systems. This is the list of the
latest versions that are supported at the time this document was written:

� AIX Version 4
� HP-UX Version 10.20
� Solaris 2.4 and 2.5.1

The CMVC Server for UNIX is built using the following relational databases (although we do
not provide all possible combinations of operating system and database).

� DB2 UDB Version 5.2
� Oracle Version 7.3.4
� Informix Version 7.3

 � Sybase 11.9.2

Although we do not do a native build on Sybase 11, the build on Sybase 4.9, works fine
on Sybase 11.

A set of quick status checklists with a summary of the build and package activities for the
Client/Server code and the GUI code are provided in the appendices.

 Building and packaging CMVC for UNIX 1

 DISCLAIMER

To avoid misunderstandings with the purpose of this technical report and to better understand
its scope, the following disclaimers are in order:

� This technical report is not an official publication from the CMVC group. The author is
solely responsible for its contents.

� The intention in writing this detailed process is certainly NOT to dictate to you the ONLY
way to build the code; the intention is to document the process that we have used and that
has proven to be successful.

� This process is NOT perfect and there is room for improvement, and you are welcome to
improve it and to provide feedback to update this document to reflect that improvement.

� This technical report was prepared when working with CMVC 2.3.1.4 in the operating
systems and database versions described in this document.

Therefore, if you have a different version of the mentioned software, then you may expect
some differences in the information or in the procedures described in this technical report.

� This technical report covers information that the author has gathered thru the years while
working with the CMVC technical support team.

� It is the intention of this technical report to provide recommendations and guidelines that
can be helpful to CMVC administrators and project leads. In some cases, the procedures
will not be exhaustive, and will just show the overall sequence that has worked before,
which might be different in your case.

� Real values that were used in our setup will be used in this technical report. Thus, you
will need to customize the commands that you issue to reflect the values that are mean-
ingful to your setup.

� It is assumed that the reader has knowledge of CMVC, the appropriate database manage-
ment system (DBMS) and the appropriate operating system.

This technical report is not a substitute to the information provided by CMVC and the
appropriate DBMS and operating system. Please refer to the appropriate documentation
provided with the corresponding software.

2 Building CMVC for UNIX

CHALLENGES RELATED WITH HETEROGENEOUS
ENVIRONMENTS

There are several challenges that we faced during the development of CMVC for UNIX in a
heterogeneous environment:

� The main challenge is to maintain all needed combinations of hardware and software.

� The next challenge was to seamlessly work across the different platforms. To overcome
this challenge we used the same shared userid in all systems called "build".

� Then, we used the message-of-the-day (motd) technique to communicate between the
developers and reserve working areas.

This technique consists of a file named $HOME/motd which details the comments from
developers. This file is shown automatically at login time and there is a shell script named
"motd" which invokes the "vi" editor with this file to allow the developers to update this file.

MAINTAINING ALL NEEDED COMBINATIONS OF HARDWARE AND
SOFTWARE

The main challenge is to maintain all needed combinations of hardware and software.

The concurrent development of the CMVC Server for UNIX is done across multiple
platforms/versions, multiple hosts and multiple relational database management systems.

Furthermore, the development of the CMVC Client was done for standalone mode or inte-
grated with Softbench, plus in AIX and HP-UX we had to provide two versions, one for Motif
1.1/X11R4 and another for Motif 1.2/X11R5. Recently, we provide only the standalone version
on Motif 1.2/X11R5. That is, we are no longer providing the integrated version of the GUI
(thus, please ignore the code that is under the "intg" subdirectories, or the mode "intg").

The tasks of obtaining the hardware and software, renewing the contracts, requesting and
installing patches, providing maintenance (preventive and corrective) constitute a major portion
of the development activities.

ROLE OF 'BUILD' USERID AND EXPORTED DIRECTORY

All building activities in all operating systems is performed from the userid 'build' which has to
have the same main characteristics in all the platforms: same user id number, same group id
number and same home directory.

 Challenges related with heterogeneous environments 3

uid=21�(build)
gid=222(syscmvca)
groups=�(system),1(staff),2(bin),3(sys),222(syscmvca)
HOME=/home/build

NOTES:
' The groups should be appropriate to the platform
' The group system is required because it builds a setuid-root
application (cmvcd, the CMVC daemon).

The actual home directory for this userid resides in an exported file system from a file server
(in our case in host 'tcaix05') which must have enough capacity to hold the builds, install
images and miscellaneous for all the needed combinations (in our case 4.0 GB).

This exported file system is mounted in all other platforms, which have the same userid,
groupid and home directory:

mount tcaix�5:/home/build /home/build

The advantages of this scheme are:

� This approach allows for maximum reuse and sharing of common files such as .profile and
directories such as $HOME/bin.

� It is possible to work simultaneously in the same 'build' account from different operating
systems. For example, one developer could be doing a build for AIX 4 and DB2 UDB 5
meanwhile another developer could be using HP-UX 10 and Oracle 7.

� It is possible to perform CMVC release and level extracts and use the same host and
specify only the target directory.

Furthermore, it is possible to specify the "nomount" option when extracting a release/level
in order to not use NFS. This local extract is faster than an extract that involves NFS and
avoids the risks mentioned in “Risks of building code across NFS mounts” on page 5.

� The number of host list entries in CMVC is reduced because the system login id is always
"build". We need to create only those host list entries for our CMVC user ids and
hostnames.

One important consideration when using the CMVC GUI in such environment is that there
is ONLY one "Cmvc" resource file and one CMVC tasks list. Furthermore, the developers
need to be aware of the CMVC user id when using the GUI, because it will reflect the
name of the previous developer.

4 Building CMVC for UNIX

Risks of building code across NFS mounts

If your NFS setup is not too reliable, then you may have problems during the extraction of
large releases or levels. One alternative is to consider doing a local extract by using the
"nomount" option; also, you can consider using AFS or DFS.

New versions of NFS now support TCP instead of UDP to verify that each packet that is sent
is actually received. When using NFS with UDP you should test the executables and search
for compiled/linked objects of size 0 (zero):

find .oEWfbzE.#xjboerEusingEB'GEorE$'Gx

#!/usr/bin/ksh
#--+
NAME: get_opsys
#
Return a string identifying the operating system.
Output: OPSYS = (AIX, HP-UX, SunOS, Solaris)
#
Notes about uname:
' The command "uname -a" returns the following information:
#
operating_system_name node_name release_name version_name
#
' Examples of uname:
#
AIX 4: AIX oem-ppc3 1 4 ����22559���
HP-UX 1�: HP-UX oem-hp�1 B.1�.�1 A 9���/735 2�1�377972 two-user license
Solaris 2.4: SunOS oem-sn�1 5.4 generic sun4m sparc
#
#--+
get_opsys()
{
raw= uname -a
OPSYS= echo $raw | cut -f1 -d' '

Test for Solaris (5... or higher) or SunOS (4...)
The problem is that the Solaris op-sys is identified as SunOS, and
there is no string that indicates that is "Solaris". The distinction
is done only by the version number.

if ffl "$OPSYS" = "SunOS" “
then

var= echo $raw | cut -f3 -d' ' | cut -c1-1
if ffl $var -ne 4 “

 then
 OPSYS="Solaris"
 fi
fi
export OPSYS
echo "get_opsys: " $OPSYS
}
get_opsys

end of file

Figure 1. get_opsys(): Shell script to find out name of operating system

6 Building CMVC for UNIX

 Shared .profile

The shared .profile has to be comprehensive enough to accommodate for the differences
between platforms and databases. For example, the location of one utility may be /bin in one
system or /usr/bin in another.

We use the name of the host inside a case statement in order to provide environment vari-
ables that deal with these differences.

USING A BULLETIN TO COMMUNICATE NEWS
(MESSAGE-OF-THE-DAY)

Because the same build directory is used across the systems, it is important to have a "bul-
letin" for messages to avoid collisions with the usage of subdirectories.

It is recommended to use the file $HOME/motd (for "Message Of The Day") to place a note
that would be of importance to the other users of the build directory. This file is displayed
immediately after the logon and before the first prompt.

An example is shown below:

System/DB: Orac7.3 Inf7 DB2v5 Syb11
 oem-ppc3 AIX4 X X X
 oem-sn13 solaris X X
 oem-hp�3 V1� X X

Release: cs231
cmvc231/aix4/cs/informix7 - L ��2, Migration - Angel
cmvc231/hp1�/cs/informix7 - L ��2, bug X - JRY (oem-hp�3)

Release: gui231
cmvc231/solaris/gui/x11r5/stal - PMRs - Angel

The shell script used for displaying the message of the day is shown below:

 Challenges related with heterogeneous environments 7

#!/usr/bin/ksh
#
Edit and update the message-of-the-day (motd)

Take last line of file and save in temporary file
outfile="/tmp/motd.build"
let x= cat $HOME/motd | wc -l | tr -d ' '
let y=$x-1
head -$y $HOME/motd > $outfile
echo Entering vi to edit current motd
echo Note: do not enter date, it will be appended automatically
sleep 2

Edit file and append time/date stamp
chmod u+w $outfile
vi $outfile
echo Exiting motd, date is being appended
echo "'''End $HOME/motd as of date . 'motd' to update'''" >> $outfile
mv $HOME/motd $HOME/motd.old

Save old file and install new one
cp $outfile $HOME/motd
if ffl -f $outfile “
then
 rm $outfile
else

echo "Error, new motd not copied. Saving $outfile"
fi

Show results
clear
echo "Displaying new motd:"
sleep 2
cat $HOME/motd
exit �

end of file

Figure 2. motd: Shell script to edit and view the message-of-the-day

8 Building CMVC for UNIX

OVERALL PROCESS WITH CMVC

CMVC is used to manage the software configuration and the file changes for the CMVC
Server and Client for UNIX. This section describes the overall process for handling the files
and the different CMVC objects associated with the CMVC Server and Client for UNIX.

FAMILIES, COMPONENTS AND RELEASES

The CMVC 2.3.1 product is developed and maintained in the "toro" family. The components
and releases are:

� The main component for the server and the line commands in the toro family is cmvc
and the release is cs231 .

� The component for the tools to install the code in the toro family is called cmvcInstallp
and the release is inst231 .

� The component for the GUI in the toro family is called cmvcgui and the release is
gui231 .

� The parent component for the obsolete components and releases is called "OBSOLETE".
In this way, these obsolete objects do not clutter the tree view of the active components.

The components have the default process which include the Verify subprocess for Defects
and Features and the Design, Size and Review subprocess for Features (and not for Defects).

The releases have the Fix, Track and Level subprocesses during all the development phases.

The Approval subprocess for the releases is activated during the times when the code is
about to be prepared for verification and for packaging; in that way, the changes to the
release are carefully monitored and controlled.

Instead of three separate releases, it might be possible to use only one release for all the
code (line commands, GUI, installation tools), which could minimize the overhead associated
with tracks and levels. However, we found that having three releases gives us also much
needed flexibility for handling situations where the development activities concentrated on the
server code and there were frequent code changes, and thus, we could continue at slower
pace of change with the GUI.

In each refresh of the CMVC code to customers, we provide a full replacement. We identify
these refreshes by using the CMVC Level as the 4th identifier from left to right; for example,
our latest refresh for the code was Level 4 or refresh "2.3.1.4".

 Overall process with CMVC 9

 PROCESS MODEL

This section describes the development process followed by the CMVC development team to
handle defects and features.

There are three important characteristics in this process:

� There is only one active level at a time.

This avoids the problem of having prerequisite tracks that are in another active level
(spaghetti tracks).

� The criteria to commit a level is that the code can be built successfully, regardless if the
function is working as desired. This guarantees that any level can be extracted and built
correctly.

If the level builds fine, but if there are functional problems, then new defects are created
and handled in the next level.

We try to avoid a large number of file changes and tracks in a level.

We would rather have many small levels than a single extremely large level. There are a
couple of reason for this decision:

– The Level -check and Level -commit are by far the most expensive operations in
CMVC, in terms of CPU usage and in exploitation of the database.

– If you wait a long time before committing a level, then the users who created defects or
features will not see any verification records and the testers of your software may not
see a driver built in a long time.

While reading this document, it might be helpful to have a copy of the Appendix A "CMVC
State Diagram", page 72 from the CMVC Concepts manual. In this way you will be able to
follow the state transitions and the relationships between the elements.

PROJECT LEAD CREATES COMPONENTS AND RELEASES

1. The project lead creates the necessary components under the family.

2. These components use the Design-Size-Review (DSR) subprocess for features, but the
DSR subprocess will not be used for defects. The verify subprocess will be used for both
features and defects.

3. The project lead creates under the appropriate component the relevant releases.

Each release should use the subprocesses fix, track, test and level. Depending on the
stage of the release, it might be necessary to add the approval subprocess.

10 Building CMVC for UNIX

Originally we used the test subprocess when the team was larger and we had one tester
fully dedicated to CMVC, but now that the team is smaller, we found that the verification
records provide us with the opportunity to ensure that the fix indeed addressed the
problem. Thus, we do not use the test subprocess anymore.

HANDLING DEFECTS AND FEATURES

1. The project lead or a team lead will assign to the developers the appropriate defects and
features to be implemented.

2. The developers accept the defects and the defects move to the 'working' state.

3. The features are designed, sized, reviewed, and accepted, until eventually they will be in
the 'working' state.

4. A track is created to associate each defect or feature with the appropriate release or
releases.

DEVELOPERS WORK WITH FILES USING TRACKS (CODE AND UNIT
TESTING)

This is the phase for Coding and Unit Testing.

1. The developers will create/check-out, compile, test, debug and check-in the files affected
by the release.

Because the release uses the track subprocess, during check-in, the developers need to
specify the appropriate track.

The existing files that are not changed as a result of the feature (but need to be included
during the compilation), are extracted.

We recommend that the user performs a release/level extract of the committed version.

2. All the components that have file changes will have a a fix record for a track.

You can see the fix record by selecting the "Fix Records..." option from the "Windows"
pulldown in the "CMVC - Tracks" window.

3. You can see the file changes in a track by selecting the "Change History" option from the
"Show" pulldown in the "CMVC - Tracks" window.

 Overall process with CMVC 11

PREPARING THE CODE FOR FUNCTION VERIFICATION TEST (FVT)

Once the developers decide that it is time to integrate the code and go to the Function Verifi-
cation Test (FVT) phase, then the following actions will take place:

The project leader will confer with the developers to make sure that all the files that will be in
FVT must have completed the unit testing.

1. The project leader will create a level for the release.

The initial state of the level is 'working'.

2. The fix records for each relevant track need to be completed.

Ideally, the component owner for the fix record should review the code that was changed,
and then mark the fix record as completed. This action will certify that the code compiles
at the individual level and that unit testing has been performed.

However, in practice, this step is done only on difficult file changes where a second
opinion is advisable.

3. When all the fix records are marked as completed, then the track is moved from the 'fix'
state to the 'integrate' state.

4. For each track, a level member has to be created for the level. The level member window
can be shown by selecting the "Level Members" option from the "Windows" pulldown in
the "CMVC - Levels" window.

This action will move the level to the 'integrate' state.

This action is done by the builder, who is the person in charge of adding the tracks to the
level and then extracting the level in order to compile the code.

5. Then a build is done of the level in order to produce the testing driver for the release.

For more information, see the process document for the build activity.

6. If a problem is found during the compilation/linking of the code from the level and if a
change has to be done in a file, then it is necessary to move the track to the "fix" state; in
order to do that it is necessary to do the steps described in “Backing out a faulty FVT
driver” on page 13.

7. Before extracting the level, it is necessary to check it in order to ensure that all file
changes are present, and that there are no missing prerequisites.

If there are missing prerequisites, then the missing tracks should be added or the appro-
priate tracks present in the level should be removed (in case the prerequisite track is not
ready to be integrated).

8. If starting a build from scratch, then the builder will perform a full extract of the latest
committed level. Then, the builder will extract the Delta of the current integrated Level.

12 Building CMVC for UNIX

If not starting from scratch, then a Delta of the current Level might be sufficient. In case of
doubt, delete the current build tree and do a full level extract plus a delta extract.

9. If no problems were found during the build activity, then the level is committed and com-
pleted.

10. We may change the value for the level field "type" to indicate how the code will be distrib-
uted:

� Gold, if the code is going to be part of a standalone CD-ROM or participate in the IBM
Software Solutions for AIX Showcase CD-ROM.

� Refresh, if the code is just going to be placed in the internal and external FTP sites for
users to download.

� Beta, if the code is going to be delivered to few customers as beta code.

Backing out a faulty FVT driver

If during the preparation of an FVT driver, a problem is found, then it could be necessary to
back-out the offending track, fix the files, and repeat the process. This 'backing out' action
can be accomplished by following the steps below:

1. Remove the level member associated with the track that contains the file or files to be
modified.

This can be done by selecting the "Remove" option from the "Actions" pulldown in the
"CMVC - Level Members" window.

2. Move the track from the "integrate" state to the "fix" state, so that the files in question can
be modified.

This can be done by selecting the "Fix" option from the "Actions" pulldown in the "CMVC -
Tracks" window.

3. Activate the fix records for the track.

This can be done by selecting the "Activate" option from the "Actions" pulldown in the
"CMVC - Fix Records" window.

4. Check-out, modify the contents of the files, compile, test, and check-in the files again.

5. Complete the fix records; this action will move the track to the integrate state.

6. Go back to step 5 on page 12.

 Overall process with CMVC 13

DEALING WITH TRACKS/FEATURES DURING FVT

1. Once the level moves to the "complete" state, the tracks move to the "test" state.

In case the release does not have an environment list, then the track moves to the "com-
plete" state.

2. Once the track is in the "test" state, then the FVT tester will test the code and will have
the opportunity to accept, abstain, or reject the track.

Originally we had a full-time tester and thus we needed the test subprocess, but now our
team is smaller and we do not use the test subprocess, instead we use the verification
records.

3. If no problems are encountered that are related to the track/feature at hand, then the
tester will "accept" the test record for the track.

To access the test record, select the "Test Records..." option from the "Windows" pulldown
in the "CMVC - Tracks" window.

4. If the tester finds a problem, then the tester will "reject" the test record.

Then the tester should open a defect reporting the problem. See “Dealing with defects
created during FVT” on page 15.

5. Once the test records for a track have been accepted/rejected/abstained, the track moves
to the "complete" state.

This in turn moves the defect or feature to the "verify" state.

6. The originator of the defect or feature is notified that the defect or feature is now in the
verify state, and then the verification record for the defect or feature needs to be accepted,
rejected, or abstained.

When the verification records are modified, the defect or feature moves into the "complete"
state.

7. If the verification record is rejected, the originator MUST create a new defect or feature in
order to correct the problems.

Note: After a verification record is rejected or abstained, CMVC will NOT automatically
create a new defect or feature.

14 Building CMVC for UNIX

DEALING WITH DEFECTS CREATED DURING FVT

1. The testers will create defects for those problems encountered during FVT.

The component owners will be notified by CMVC of the new defects and they will handle
the defects, such as accept, reject, assign.

2. For each accepted defect, the owner of the defect needs to create a track.

3. Repeat the process of adding the track to a level.

Severities for defects

The definition of the severities that are used for the defects is shown below:

1. Function can not be used. Immediate fix is necessary.

2. Function can be used but with serve restrictions.

3. Function can be used with minor restrictions, not critical.

4. Function can be bypassed, but should be corrected.

 Overall process with CMVC 15

16 Building CMVC for UNIX

PREPARING THE BUILDS

 GENERAL ASSUMPTIONS

� For each operating system it is necessary to have a build host with the appropriate hard-
ware and software.

� The build for each platform/database combination has to be done in each platform (no
cross-compiler available).

� A single userid, build , will be used for all building activities.

� The relational database has to already be installed and a database (for example, in DB2
this is called a database instance) with the name of "build" has to be created.

� The task of building and packaging the complete product for all the environments is
complex and prone to error due to the magnitude of the combinations. It is suggested to
use the checklist described in Appendix D, “CMVC Client/Server UNIX, Build and Package
Checklist” on page 67 to keep track of the progress for each build.

ONE-TIME ONLY ACTIVITIES

Create CMVC family 'build' to be used with DB2

When using DB2, it is necessary to create a CMVC family named 'build' on each platform in
order to perform the pre-compilation steps to resolve the SQL queries with the actual data-
base.

This CMVC family must have the following characteristics:

login: build
gid: <same as the gid for the db2instance>

The database name 'build' is used in the Make.<database>.<platform> make scripts.

After the database has been created:

1. Execute "db2 connect to build"

2. The results should be:

 Preparing the builds 17

Database Connection Information

 Database product = DB2/6���
 SQL authorization ID = BUILD
 Local database alias = BUILD

3. Execute "db2 connect reset"

Create necessary links

In order to have a common interface for the build process, in some cases it is necessary to
provide symbolic soft links between the actual path for the databases/tools and the paths used
inside the MAKE.cmvc and related files.

To do these links, it is necessary to execute the following command as root:

ln -s <actual-path> <desired-path>

NOTE: The actual-path (source) values shown in this document are the ones that apply to our
environment. The desired-path (target path) should be the ones shown below.

 AIX

� Host oem-ppc3 and database Oracle 7.3.4:

ln -s /disk2/u�1/app/oracle/product/734 /usr/oracle73

� Host oem-ppc3 and database Informix:

ln -s /disk2/informix /usr/informix

 HP-UX

� Host oem-hp03 and database Oracle 7.3.4:

ln -s /cmvc_db/u2/oracle/product/7.3.4 /usr/oracle73

� Host oem-hp03 and database Informix:

ln -s /users/informix /usr/informix

 Solaris

� Host oem-sn01 and database sybase49:

mkdir /usr/db
ln -s /export/home2/sybase/sybase49 /usr/db/sybase49

� Host oem-sn13 and database sybase11:

18 Building CMVC for UNIX

mkdir /usr/db
ln -s /export/home/sybase /usr/db/sybase

� Host oem-sn12 and database Oracle 7.3.4:

ln -s /export/home2/u�1/app/oracle/product/7.3.4 /usr/oracle73

INSTALL THE CMVC CLIENT

The CMVC client needs to be installed in each machine in order to interact with the CMVC
family "toro".

To install the latest published CMVC code, using either smit-installp or tar files, get the images
as follows:

1. ftp ftp.software.ibm.com

2. user anonymous

3. cd ps/products/cmvc

4. cd aix4/231 (or relevant combination)

 5. dir

 6. prompt

 7. ascii

8. mget README* (and other text files)

 9. binary

10. mget *.obj (or relevant *.tar or *.tar.Z files)

11. exit.

12. Follow the instructions from the README.inst* file.

EXTRACT THE RELEASE "TOOLS231"

Many of the tools and necessary files (such as .profile) for using the build account and to
perform most of the tasks mentioned in this document are in the release "tools231".

Extract the release and specify:

 Preparing the builds 19

host: tcaix�5.raleigh.ibm.com
directory: /home/build
user id: 21�
group id: 222
file permissions: 777

One of the files that will be extracted is .profile, which needs to be customized for the partic-
ular host that you are going to use. Specifically, you may need to add a complete subsection
in the huge "case"/"switch" statement which is appropriate for the particular hostname, in order
to setup the proper variables.

CREATION OF THE BUILD/SHIP/PACKAGE TREE

To create the top portion of the Build/Ship/Package tree (to be called just "Build tree") as
shown in “Top directory structure - created via shell script” on page 25, do the following:

1. Login in as 'build'.

2. Create the directory that will complete the specification of TOP, such as 'cmvc231'. In this
way the $TOP will be $HOME/cmvc231.

3. Change to the directory $TOP.

The shell script will create the build tree from the current directory.

4. Execute the shell script as follows:

mkbldtree

ESTIMATED TIME FOR BUILD AND PACKAGING

The average approximate time involved in a single complete build is shown below. However,
the compilation times may range from 2 hours in fast machines such as oem-hp04 to 5 hours
in slow machines.

Furthermore, this average time should be multiplied for each combination of platform and
database to be built.

This time assumes that this is not the first build, and assumes that all the hardware and soft-
ware is operational, and that the one-time activities have been performed already. The break-
down is shown below (in hours)

Extract the installation/source files: �.5
Perform the build: 4.�
Package the files: 1.�
Perform the installation test: 1.�

20 Building CMVC for UNIX

Estimated time for all combinations

The approximate time involved in a complete build for all the combinations of
platform/database is:

1 full-time week (4� hours)

 Preparing the builds 21

22 Building CMVC for UNIX

BUILDING THE CODE

OVERVIEW OF THE WHOLE PROCESS

It takes approximately one full working week to do a complete build from scratch for a single
CMVC level, such as 2.3.1.4.

The status checklist for the builds, Appendix B, “CMVC for UNIX, build and package status
checklist” on page 63 is the "score card" or "cheat sheet" that was used in level 2.3.1.4 and
you can appreciate the enormous amount of work that is involved here.

Furthermore, it is difficult to fully automate the process because of many limitations: network
problems, disk space, manual specification of the options to build, etc.

The CMVC Level is NOT committed until all the builds are done. Once all the compilations in
all the platforms are clean, then the level can be committed. This means that if a bug is
encountered after the level is committed, a defect will be opened for the next level. The
reason for this is to guarantee that a full extract of a level is buildable in all platforms, even
though the function itself may not be correct.

The whole sequence for the complete preparation for a single level is summarized below and
is further explained in detail in other sections in this document:

1. Tell other CMVC developers to stop using the affected directories and to do a checkin or a
copy to another directory of any files that are important to them.

2. Login as build into the specific system to use, such as "oem-ppc3" for AIX 4 for DB2 V5.

3. Change the directory to the desired combination, such as:

cd $HOME/cmvc231/aix4/cs/db2v5

4. Delete "rm -fr" the appropriate top directory, such as:

rm -fr $HOME/cmvc231/aix4/cs/db2v5

5. Do a full extract (attribute: -full) of the latest committed level, such as 4.

Level -extract 4 -release cs231 -node tcaix�5 \
-root "/home/build/cmvc231/solaris/cs/sybase11" \
-uid 21� -gid 222 -dmask 777 -verbose -full

6. Do a delta extract of the current non-committed level, such as 5.

Level -extract 5 -release cs231 -node tcaix�5 \
-root "/home/build/cmvc231/solaris/cs/sybase11" \
-uid 21� -gid 222 -dmask 777 -verbose

 Building the code 23

7. Modify manually "qmake" to use the appropriate options, such as:

PLATFORMOPT=AIX4
PLATFORMSTR=STR_AIX432
DATABASEOPT=db2v5
DATABASESTR=STR_DB2V52FP11
BUILDOPT=all # that is, both server and line commands
COMPILEOPT=noNetLS # that is, do not include the NetLS code

Note: The PLATFORMSTR and DATABASESTR values are only used to add the servicea-
bility strings into the executable code, in order for the "what" command to get them. These
values do not affect the compilation of the application.

8. Start "qmake" and monitor its progress.

There are some compilations that usually fail and require manual intervention, such as
Solaris. The workarounds are known and easy to apply manually, but there is no way to
automate them.

9. After the compilation is done, then do "qmake ship" to copy the shippable code into the
"ship" directory.

10. Repeat the extract and build process for the GUI, for the standalone version of the client.

11. As root, change directory to /home/build/cmvc231/installp and kickoff the "make -f
Makefile.<platform>.<option>" to create the appropriate tar file.

12. Login as root again to create the tar file for the client.

13. After all the tar files for servers and clients are done, create backup tapes (using the non
compressed files).

14. For AIX 4 we have to prepare also installp smit images, which are done by using
"bld.all.images4".

15. After all the install smit images are done, then create backup tapes (using the non com-
pressed files).

16. Now it is time to copy the files into:

 � A CD-ROM.

� The IBM external FTP site.

In order to ftp the code, it is necessary to compress all the tar and installp smit files.

17. FTP to the staging directory in Boulder and follow the appropriate instructions to place the
code there. It takes around 24 hours to be copied in to the real external FTP site.

24 Building CMVC for UNIX

LOCATION OF THE SOURCE CODE

The source code for the CMVC Server/Client for UNIX, Version 2.3.1, is in the "toro" family:

family: toro
release: cs231 -> server and line commands
release: gui231 -> GUI
release: inst231 -> packaging tools in /home/build/cmvc231/installp
release: tools231 -> miscellaneous tools in /home/build

BUILD/SHIP/PACKAGE DIRECTORY STRUCTURE

Top directory structure - created via shell script

The top portion of the Build/Ship/Package directory structure is shown below and is manually
created via the shell script 'mkbldtree' from the release tools231 (see section “Creation of the
Build/Ship/Package tree” on page 20).

$HOME/
bin/ ' general tools from release tools231

 cmvc231/
 <operating-system>/
 cs/
 <database>
 gui/
 stal/

Figure 3. Top directory structure - created manually via script

Some examples are:

$HOME/cmvc231/aix4/cs/db2v5
$HOME/cmvc231/aix4/gui/stal/x11r5

 Building the code 25

Source directory structure - created by extracting release 'cs231'

The following leaves of the directory structure tree are created when performing a
Release/Level extract, and contain the actual source code that will be built.

$TOP/
 bin/
 samples/
 src/
 adm/
 archive/
 cat/
 daemon/
 inc/
 lib/
 etc/
 net/
 packet/
 request/
 file/
 ni/
 client/
 server/
 session/
 restore/
 tools/
 common/
 common1/
 informix/
 oracle7/
 sybase/
 xwind/

ui/ ''' Command Lines
 simple/
 cmd/
 etc/
 flags/

Figure 4. Source directory structure - created by release 'cs231' (1 of 2)

26 Building CMVC for UNIX

 server/
 db/
 common/
 informix/
 def/
 gen/
 init/
 src/
 oracle7/
 def/
 gen/
 init/
 src/
 sybase/
 def/
 gen/
 init/
 src/

xwind/ ''' for DB2
 def/
 gen/
 init/
 src/
 etc/
 tx/
 vc/

Figure 5. Source directory structure - created by release 'cs231' (2 of 2)

Notes:

1. The $TOP used in this document is:

$HOME_FOR_BUILD/<cmvcVRM>/<platform>/cs/<database>

Where:
 <cmvcVRM> is 'cmvc231' for 2.3.1
<platform> is "aix4", ├hpux1�", 'solaris'
<database> is db2v5, informix, oracle7, sybase49

Example for AIX 4 with DB2 on 'oem-ppc3':
/home/build/cmvc231/aix4/cs/db2v5

 Building the code 27

Install directory structure - created by extracting release 'inst231'

The following leaves of the directory structure are created when performing a Release extract
of 'inst231'. (see section “Extraction of inst231 using Release or Level Extract” on page 35).

$HOME/
 cmvc231/
 installp/
 com/
 cmvccltstal/
 cmvccltstalmEn_US/
 cmvcsrvdb2/
 cmvcsrvinfx/
 cmvcsrvmEn_US/
 cmvcsrvora7/
 cmvcsrvorac/
 cmvcsrvsyb/
 hpux/
 makecdrom/
 nls/
 solaris/

Figure 6. Bottom directory structure - created by release 'inst231'

28 Building CMVC for UNIX

Bottom directory structure - created by doing make with 'ship'

The following leaves of the directory structure are created when performing a make while
specifying the 'ship' action (see section “Gathering the shippable files (ship step)” on
page 42).

$TOP/ship/
 client/
 cmvc/
 usr/
 lib/
 nls/
 msg/
 En_US
 lpp/
 cmvc/
 bin/
 samples/
 install/
 r2/
 server/
 cmvcsrv/
 usr/
 lib/
 nls/
 msg/
 En_US
 lpp/
 cmvc/
 bin/
 bind/
 install/
 samples/

Figure 7. Bottom directory structure - created by doing make with 'ship'

 Building the code 29

ACTIVITIES TO BE DONE PER EACH VERSION, RELEASE OR
MODIFICATION

There are some activities that need to be done only once per each version, each release or
each modification, and there is no need to repeat them for every build.

Files that need to be modified due to changes in Copyright or VRM

This section lists the files that need to be modified when there are changes to the Copyright
notice (such as a new year) or to the Version-Release-Modification (VRM) number. It is also
applicable for the information on the service level, which is included in the source files as an
static char that has the strings "@(#)"; in that way a what command can be executed on the
executable files to find out this service information, such as:

cd /usr/lpp/cmvc/bin
what cmvcd | grep cmvc

The result may be:

cmvc CMVC Version 2.3.1.4, (C) Copyright IBM Corp.,1993,1999
cmvc 5765-2�7, 5765-2�2, 5765-397, 5622-�63

 cmvc 96/�8/28 SID=1.26.1.52
cmvc Platform: AIX 4

 cmvc Database: Informix

In order to incorporate these strings we did the following:

� The include file "whatinfo.h" was created that contains all the static strings with @(#) and
the keyword "cmvc". Based on Define symbols passed to the compiler, the proper oper-
ating system or database string was activated.

A condensed version of this file is shown in Figure 8 on page 31.

30 Building CMVC for UNIX

char copyrightInfo[]
= "@(#) cmvc CMVC Version 2.3.1.4, (C) Copyright IBM Corp.,1993,1999";

char productInfo[]
= "@(#) cmvc 5765-2�7, 5765-2�2, 5765-397, 5622-�63";

/' Determine the platform '/

#ifdef AIX4
char platformInfo[]

= "@(#) cmvc Platform: AIX 4";
#endif

/' Determine the database '/

#ifdef informix
char databaseInfo[]

= "@(#) cmvc Database: Informix";
#endif

Figure 8. Header file with service keywords for the what command

� The include file "whatinfo.c" was created that contains the code that uses these static
strings.

Some compilers will strip these static variables if they are not used in the program, thus,
we had to create a dummy section of code that does not do anything practical, but
because the variables were actually used, then the compiler will not strip them.

A condensed version of this file is shown in Figure 9 on page 32.

 Building the code 31

 int dummy;
char ' dummyC;
char ' dummyP;
char ' dummyS;
char ' dummyL;
char ' dummyD;

dummyC = copyrightInfo;
dummyP = productInfo;
dummyS = serviceInfo;
dummyL = platformInfo;
dummyD = databaseInfo;

if (dummy == -7�77)
 {

printf("%s%s%s%s%s\n", dummyC, dummyP, dummyS, dummyL,
 dummyD);
 }

Figure 9. Source file with service keywords for the what command

� In the main file for each executable, we did the following:

– Included the following declaration of a static string that contains CMVC expandable
keywords in order to place the date when the main file for the executable was
extracted, and the version id associated with that file:

/' Support Information '/
char serviceInfo[] = "@(#) cmvc %D% SID=%I%";

– Included the header file whatinfo.h

/' Include the header file with the information for the 'what' command '/
#include "whatinfo.h"

– Included in the main routine, immediately after the declaration of the variables and
before any executable statement, the code file whatinfo.c

/' Include the source file with the information for the 'what' command '/
#include "whatinfo.c"

 Release "cs231"

The following files must be changed in release "cs231" (the actual code) in order to update
the Copyright information and the Title:

� *.c and *.h

32 Building CMVC for UNIX

qmake (when adding new platforms, DBMSs)
MAKE.cmvc (when adding new platforms, DBMSs)
Make.dbms.platform (specific, such as: Make.sybase.solaris)
src/inc/whatcmd.h (Operating System for the client)
src/inc/whatinfo.h (Operating System and DBMS, for the server)
src/cat/cmvc.msg (Message catalog)

 � Readme files:

src/adm/README.what.is.new

 Release "gui231"

The following files must be changed in release "gui231" (the actual code) in order to update
the Copyright information and the Title:

 � source code

cmvc.c

 � message catalog

cmvchelp.msg

� Read me files

hp/README.gui
ibm/README.gui
solaris/README.gui

 � Build utilities

qmake (when adding new platforms)
solaris/stal/Makefile.x11r5.solaris26 (specific)

 Release "inst231"

The following files must be changed in release "inst231" (the files for packaging) in order to
update the Copyright information and the Title:

 � Shell scripts

bld.all.images4
aix4/tarinstall.aix4
hp1�/cmvcinstall
hp1�/tarinstall.hpux1�
solaris/cmvcinstall
solaris/tarinstall.solaris
makecdrom/cmvcinst
makecdrom/cmvcinst.hpux1�

� Readme files, such as:

 Building the code 33

platform/tar/README.contents.tar.txt

Files that need to be modified when adding new files

At this stage, if there are new files to be packaged they will most likely be:

� Documentation files in src/adm/README.*. Thus, only the src/adm/Makefile needs to be
updated.

� Samples in samples/*. Thus, the samples/Makefile and either samples/client.samples or
samples/server.samples need to be updated.

PREPARATION FOR THE BUILD

This section is only applicable for the person who is responsible for the production build on
the build machine.

For the target builds where the "build" directory is exported from tcaix05, you can perform all
the extracts and the file checkout/checkin activities from build@tcaix05 and all the builds from
build@target_server.

1. Login as "build" to the target server.

The home directory is "/home/build". This directory resides actually in tcaix05 and is
exported and mounted in the server.

Note: We cannot do incremental builds for CS (Client/Server), because there is not a good
way to keep track of the dependencies with the current structure of the make files. This is the
reason for a complete cleanup of the build-tree for each build.

Process Tracks, Levels and Level Members

Ensure that there is a level with all the appropriate tracks. For more details, see “Process
model” on page 10.

Extraction of the tools for the build and packaging process

Source code extraction requires some knowledge of CMVC operations. Users are suggested
to refer to CMVC manual "Understanding IBM AIX CMVC/6000 Concepts" for details.

34 Building CMVC for UNIX

Extraction of tools231 using Release or Level Extract

The release 'tools231' contains utilities to be included in the $HOME/bin directory that will help
to perform tasks such as copying the code from the ship tree into the final ('real') directories
for the server, client and gui code. This procedure will allow us to have a setup for testing the
code, using the directories that the end-users will use.

You can use a working version of any CMVC client to extract the source files as follows:

1. Start the CMVC client with the family toro.

2. Bring up the Release window and select the release tools231.

An alternative way is to bring up the Level window and select the desired level.

3. Select the action "extract" and specify:

� For releases, choose to extract the committed versions of the files

Choose the option "Current versions" if this is the first build of the release (in case
there are no committed versions yet).

� For levels, choose to extract either Delta or Full.

� Specify the Destination (we use a local extract, without involving NFS):

host: nomount
directory: /home/build/bin

� Specify the File and Directory Access:

User number (UID): 21�
Group number (GID): 222
File permissions:
Directory permissions: 777

� Choose to expand the keywords (this is the default).

� Choose NOT to perform the CRLF conversion (this option is only available from the
DOS/Windows and OS/2 clients).

4. Select OK to start the extraction of the files for the release.

Extraction of inst231 using Release or Level Extract

The release 'inst231' contains utilities to be included in the $HOME/cmvc<VRM>/installp direc-
tory that will help to perform tasks such as preparing the installable images for CD-ROM and
tape for all the combinations.

You can use a working version of any CMVC client to extract the source files as follows:

1. Start the CMVC client with the family toro.

 Building the code 35

2. Bring up the Release window and select the release inst231.

An alternative way is to bring up the Level window and select the desired level.

3. Select the action "extract" and specify:

� For releases, choose to extract the committed versions of the files

Choose the option "Current versions" if this is the first build of the release (in case
there are no committed versions yet).

� For levels, choose to extract either Delta or Full.

� Specify the Destination (we use a local extract, without involving NFS):

host: tcaix�5
directory: /home/build/cmvc/installp

� Specify the File and Directory Access:

User number (UID): 21�
Group number (GID): 222
File permissions:
Directory permissions: 777

� Choose to expand the keywords (this is the default).

� Choose NOT to perform the CRLF conversion (this option is only available from the
DOS/Windows and OS/2 clients).

4. Select OK to start the extraction of the files for the release.

36 Building CMVC for UNIX

BUILDING THE CMVC SERVER AND LINE COMMANDS

This chapter describes how to build the CMVC Server and Line Commands, where to obtain
the source code, what is the directory structure used for the operations, and what is the
sequence of these operations.

COMPLETE CLEANUP OF THE BUILD TREE

This type of cleanup is intended for those occasions when it is necessary to start from an
empty build directory:

1. Change to the $TOP directory

2. Execute the following command to cleanup all the subdirectories:

rm -fr '

Cleanup of the previous build

In case there is no need to extract the source code again, but is necessary to perform another
build, then you can follow the steps below to trigger a new build, ensuring that all the files will
be compiled.

1. Change the directory to the TOP directory, such as $HOME/cmvc231

2. Change the directory to the desired platform-type-database, such as "aix4/cs/db2v5".

3. Run qmake clean

4. If you are going to do the ship step later on, you should issue the following command:

rm -rf ship

EXTRACTION OF THE SOURCE FILES

Source code extraction requires some knowledge of CMVC operations. Users are suggested
to refer to CMVC manual "Understanding IBM AIX CMVC/6000 Concepts" for details.

 Building the CMVC Server and Line Commands 37

Extraction using Release or Level Extract

Note:

It is necessary to perform an individual source extraction for each entry in the build tree that
has "cs" in the Path, that is, a separate source extraction will have to occur in order to build
the client/server for each platform. Refer to Figure 3 on page 25 to see each of the plat-
forms.

You can use a working version of any CMVC client to extract the source files as follows:

1. Start the CMVC client with the family toro.

2. Bring up the Release window and select the release cs231..

An alternative way is to bring up the Level window and select the desired level.

3. Select the action "extract" and specify:

� For releases, choose to extract the committed versions of the files

Choose the option "Current versions" if this is the first build of the release (in case
there are no committed versions yet).

If you are doing Unit Testing or Function Testing you may specify to extract the current
versions.

� For levels, choose to extract either Delta or Full.

� Specify the Destination (we use a local extract, without involving NFS):

host: tcaix�5
directory: /home/build/cmvcVRM/x/y/z

where
VRM is the Version and Release number, such as: cmvc231

x is aix4, hpux1�, solaris
y is cs or gui
z is for the database (only if building client/server):

 oracle7
 informix
 sybase49
 db2v5

� Specify the File and Directory Access:

User number (UID): 21�
Group number (GID): 222
File permissions:
Directory permissions: 777

� Choose to expand the keywords (this is the default).

38 Building CMVC for UNIX

4. Select OK to start the extraction of the files for the release.

BUILDING THE CODE

The script "qmake" in the $TOP directory is a front end to the MAKE.cmvc shell script which is
really the build shell script.

To build the code follow these steps:

1. Change the file permissions for qmake to be 755:

chmod 755 qmake

2. Modify manually "qmake" to use the appropriate options, such as:

PLATFORMOPT=AIX4
PLATFORMSTR=STR_AIX432
DATABASEOPT=db2v5
DATABASESTR=STR_DB2V52FP11
BUILDOPT=all # that is, both server and line commands
COMPILEOPT=noNetLS # that is, do not include the NetLS code

Note: The PLATFORMSTR and DATABASESTR values are only used to add the servicea-
bility strings into the executable code, in order for the "what" command to get them. These
values do not affect the compilation of the application.

3. Execute qmake

4. The output of the build will be stored in a file named nohup.build".

5. You will see an appropriate message to indicate that the build has finished.

6. You can kill the build process by doing Control-C.

 MISCELLANEOUS NOTES

Notes on the MAKE.cmvc shell script

The MAKE.cmvc in the $TOP directory is used to initiate the build and ship activities. The
format and the options for this command are shown below:

Usage: MAKE.cmvc -p platform <-d dataBase> <-b buildOption>
<-c compileOption> <action>

Where:
-p platform Enter: aix4, hpux1�, solaris
-d dataBase Enter: oracle7, informix, sybase4, sybase, db2v5

 Building the CMVC Server and Line Commands 39

-b buildOption Enter: all, server, client

-c compileOption Enter: normal, debug, FVT, noNetLS

action Enter additional action such as 'clean' or 'ship'

Use MAKE.cmvc to set the correct environment variables for the Client/Server build.

If you would like to leave the job running overnight, or have it running in background, it is
recommended that you use the 'nohup' command as follows:

nohup MAKE.cmvc -p aix4 -d db2v5 -b all -c normal build > nohup.build &

This will cause a file called 'nohup.build' to be generated. If you would like to see the
progress of the build, you can look at the file that is being generated by issuing the command:

tail -f nohup.build

Once the build ends, you can Ctrl-c the 'tail' process in order to get back to the prompt.

FILES AFFECTED BY DIFFERENT MAKE.CMVC -C OPTIONS

In order to clarify what is the impact of compiling with different options the CMVC product,
Figure 10 and Figure 11 on page 41 lists the files (from release cs231 and level 004) which
are affected (their names are relative with respect to the TOP directory):

BETA option:
src/daemon/cmvcd.c
MAKE.cmvc

DEBUG option:
src/daemon/cmvcd.c
MAKE.cmvc

FVT option:
src/lib/server/etc/notify.c
src/daemon/cmvcd.c
MAKE.cmvc

NOFORK option:
MAKE.cmvc

IBMIUO option:
src/ui/simple/etc/netls.c
MAKE.cmvc

Figure 10. Files affected by different MAKE.cmvc -c options, part 1

40 Building CMVC for UNIX

NO_NETLS option:
src/ui/simple/cmd/Access.c
src/ui/simple/cmd/Approval.c
src/ui/simple/cmd/Approver.c
src/ui/simple/cmd/File.c
src/ui/simple/cmd/Component.c
src/ui/simple/cmd/Defect.c
src/ui/simple/cmd/Environment.c
src/ui/simple/cmd/Host.c
src/ui/simple/cmd/Size.c
src/ui/simple/cmd/Report.c
src/ui/simple/cmd/Notify.c
src/ui/simple/cmd/Test.c
src/ui/simple/cmd/Track.c
src/ui/simple/cmd/User.c
src/ui/simple/cmd/Coreq.c
src/ui/simple/cmd/Verify.c
src/ui/simple/cmd/Fix.c
src/ui/simple/cmd/Level.c
src/ui/simple/cmd/LevelMember.c
src/ui/simple/cmd/Feature.c
src/ui/simple/cmd/Release.c
src/ui/simple/cmd/Migrate.c
src/ui/simple/etc/netls.c
MAKE.cmvc

Figure 11. Files affected by different MAKE.cmvc -c options, part 2

Note: The DEBUG option uses also NO_NETLS and NOFORK

Making a DEBUG driver

To make the Client/Server with DEBUG compile options, it is necessary to use the -c flag for
MAKE.cmvc as follows:

MAKE.cmvc -p airx4 -d db2v5 -b all -c debug
 '''''

In MAKE.cmvc, the NO_NETLS define is added in the debug driver. Thus, if you want to
debug the NetLS portion of the code, then you need to modify temporarily the MAKE.cmvc file
by eliminating the -DNO_NETLS from the appropriate section. Furthermore, it is important not
to exclude the NetLS libraries, by eliminating the following lines that disable the NetLS
libraries:

NETLS_LIBS=
NCS_LIBS=

 Building the CMVC Server and Line Commands 41

Making an FVT driver

To make the Client/Server for FVT, it is necessary to use the -c flag for MAKE.cmvc as
follows:

MAKE.cmvc -p aix4 -d db2v5 -b all -c FVT
 '''

The following files are affected by the FVT compile option:

MAKE.cmvc
src/lib/server/etc/notify.c

Note: Because only the notify.c source file is affected, the client code that is built with this
option is NOT affected.

Making a BETA driver

By specifying a BETA driver, the ONLY difference from a normal driver is that the 'what'
service information will say 'This is BETA code'.

The objective of a beta driver is to be provided when a level has not yet been committed,
such as when providing a temporary fix to a customer.

Making a Gold driver

To provide executable code that is the Gold driver, it is necessary to use the -c flag for
MAKE.cmvc as follows:

MAKE.cmvc -p aix4 -d db2v5 -b all -c normal
 ''''''

Note: Be sure to change the type of the CMVC Level to "gold".

GATHERING THE SHIPPABLE FILES (SHIP STEP)

Upon successful completion of the build step, run qmake ship to copy the files that need to
be delivered to the customers from the appropriate build directory to the ship directories.

Then we could package the code in the ship directories into the installable images (in tar
format or installp-smit) for the installation and verification tests.

42 Building CMVC for UNIX

 BETA INSTALLATION

You do this step in lieu of the last step in the build and ship section.

You can copy the stuff from the ship directory into the normal directories (that is, /usr/lpp) by
doing the following:

1. Logon as build.

2. Change to the bin directory

3. Change the user to root.

4. Issue the following command:

./copy.server <top_directory_where_ship_resides> <db>

./check.server <top_directory_where_ship_resides>

./copy.client <top_directory_where_ship_resides> <db>

./check.client <top_directory_where_ship_resides>

Example for Solaris with Sybase 4,9:
./copy.server $HOME/cmvc231/solaris/cs/sybase49 sybase49

The output of the 'check' scripts should be piped to more.

5. Exit from root.

KNOWN BUILDING PROBLEMS

This section contains a compilation of the errors found during the building process.

If the build fails with generic problems

Here are things to check if a build fails. This list is operating system dependent.

� Prior to running the MAKE.cmvc with a 'ship' action, from the /src/tools/xwind directory,
issue: rm *.o *.c

� After touching the message catalog (src/cat/cmvc.msg), do a MAKE.cmvc with a 'clean'
action and rebuild.

If the build fails for AIX

None.

 Building the CMVC Server and Line Commands 43

If the build fails for HP-UX

� In HP-UX for client/server during "qmake ship":

cpp: "execute.c", line 1: error 4�36: Can't open include file
'sqlhdr.h'.
''' error code 1

To solve the problem go to the corresponding directories and touch all the object files:

cd src/lib/server/db/informix/gen
touch '.o
cd src/lib/server/db/informix/src
touch '.o

Then restart the build.

If the build fails for Solaris

� During the compilation of msgdef.c, you can ignore the following warning:

"msgdef.c", line 153: warning: identifier redeclared: fwrite
current : function() returning int
previous: function(pointer to const void, uint, uint, pointer to struct

{int _cnt, pointer to uchar _ptr, pointer to uchar _base, ucha... :
"/usr/inclue/stdio.h", line 28�

� During the first phase of the build, you can ignore the following warning (it is an old step
that tried to compile the Japanese message catalog):

LANG=ja; export LANG;
couldn't set locale correctly

� During the pre-compilation by Sybase 11 "cpre", there are some warnings that can be
ignored:

M_WHEN_WARN, Unable to find the SQL statement 'WHENEVER WARNING'
M_WHEN_NF, Unable to find the SQL statement 'WHENEVER NOT FOUND'

� During the compilation of certain *.c files, you may ignore the following warnings:

"accept.c", line 95: warning: improper pointer/integer combination: arg #1
"accept.c", line 166: warning: argument #2 is incompatible with prototype:

prototype: pointer to struct sockaddr {ushort sa_family, array⅛14‘ of
char sa_data} : "/usr/include/sys/socket.h", line 333
argument : pointer to struct sockaddr_in {ushort sin_family, ushort sin
port, struct in_addr {..} sin_addr, array⅛8‘ of char sin_zero}

"accept.c", line 223: warning: argument #1 is incompatible with prototype:
prototype: pointer to const char : "/usr/include/netdb.h", line 19�
argument : pointer to struct in_addr {union {..} S_un}

� During the compilation of netls.c, ignore the following warning:

"netls.c", line 3�9: warning: empty translation unit

44 Building CMVC for UNIX

� During the compilation of binToLong.c, ignore the following warning:

"/usr/include/stdio.h", line 81: warning: macro redefined: BUFSIZ

Known Problems when Testing the code

� In the Solaris system, if the cmvcd fails to run due to a semaphore problem, then do the
following:

1. su as root
2. Issue the command: stopCMVC $LOGNAME

This command will clear up the semaphores and other system resources.

 Building the CMVC Server and Line Commands 45

46 Building CMVC for UNIX

BUILDING THE CMVC GUI

BUILD/SHIP/PACKAGE DIRECTORY STRUCTURE FOR THE GUI

The Build/Ship/Package directory structure for the GUI is shown below. This tree is automat-
ically created when performing a Release/Level extract. However, the $TOP portion of the
tree is manually created.

$TOP/
 config/
 help/
 hp/
 stal/
 ibm/
 stal/
 menus/
 Softdm/
 CM/
 Softcmvc/
 solaris/
 stal/

The following notes clarify important details:

� The $TOP used in this document is:

$HOME_FOR_BUILD/<cmvcVRM>/<platform>/gui/<x11>/<mode>

where:
 <cmvcVRM> is 'cmvc231'
<platform> is "aix4", hpux1�", "solaris"
<x11> is 'x11r5' (Motif 1.2)
<mode> is 'stal' (for stand-alone)

Example for Solaris, standalone:
 /home/build/cmvc231/solaris/gui/x11r5/stal

PREPARATION FOR THE BUILD

This section is only applicable for the person who is responsible for the production build on
the build machine.

For the target builds where the "build" directory is exported from tcaix05, you can perform all

 Building the CMVC GUI 47

the extracts and the file checkout/checkin activities from build@tcaix05 and all the builds from
build@target_server.

1. Login as "build" into the target server.

The home directory is "/home/build". This directory resides actually in tcaix05 and is
exported and mounted in the server.

Source code extraction requires some knowledge of CMVC operations. Users are suggested
to refer to CMVC manual "Understanding IBM AIX CMVC/6000 Concepts" for details.

COMPLETE CLEANUP OF THE BUILD TREE

This type of cleanup is intended for those occasions when it is necessary to start from an
empty build directory, such as after many changes have been done to the source files. If
minor/few changes were done to the source files, this cleanup action might not be necessary.

1. Change to the $TOP directory

2. Execute the following command to cleanup all the subdirectories:

rm -fr '

EXTRACTION OF THE SOURCE FILES

Extraction using Release or Level Extract

Note: It is necessary to perform an individual source extraction for each combination of
<platform><gui><x11><stal>.

You can use a working version of any CMVC client to extract the source files as follows:

1. Start the CMVC client with the family toro.

2. Bring up the Release window and select the release gui231.

An alternative way is to bring up the Level window and select the desired level.

3. Select the action "extract" and specify:

� For releases, choose to extract the committed versions of the files.

Choose the option "Current versions" if this is the first build of the release (in case
there are no committed versions yet).

If you are doing Unit Testing or Function Testing you may specify to extract the current
versions.

48 Building CMVC for UNIX

� For levels, choose to extract either Delta or Full.

� Specify the Destination (we use a local extract, without involving NFS):

� Specify the File and Directory Access:

User number (UID): 21�
Group number (GID): 222
File permissions:
Directory permissions: 777

� Choose to expand the keywords (this is the default).

4. Select OK to start the extraction of the files for the release.

BUILDING THE CODE

Cleanup of object modules and message catalogs

This type of cleanup is intended for a complete rebuild using the code that already exists in
the build tree (that is, for incremental development). This is useful also when changing the
message catalog, in order to ensure that all the code is compiled with the latest help.c file.

1. Change to the $TOP directory, such as:

cd $HOME/cmvc231/aix4/gui/x11r5/stal

2. Execute the shell script to cleanup by removing the object modules and the generated
message catalog:

qmake clean

CONSIDERATIONS BEFORE BUILDING

It is very important to take into account the following considerations before building the code.

Making a DEBUG driver

So far, there is no provision in the makefiles to specify to compile with the debug option.

Making an FVT driver

In contrast with the Client/Server code, there is no provision and no need for an FVT version.

 Building the CMVC GUI 49

Making a BETA driver

To provide executable code that has a BETA identifier when performing the UNIX command
"what cmvc | grep cmvc", edit the "qmake" file and ensure that the FLAGS that are used with
the invokation of make has the string "BETA=-DBETA":

export FLAGS="-DBETA -D$PLATFORMSTR"

The BETA identifier looks like:

cmvc ''' This is BETA code ''' Date: 2���/�6/28

Only "cmvc.c" and "migResources.c" need to be compiled with the BETA flag. This means
that it might be possible to first perform a normal compile, then touch these 2 files and then
invoke the make command again but this time by adding the BETA flag as indicated.

Note: Be sure to change the type of the level to "beta".

Making a Gold driver

To provide executable code that is the Gold driver, do not specify any additional strings.

Note: Be sure to change the type of the level to "gold".

BUILDING THE GUI

1. Change to the $TOP directory, such as:

cd $HOME/cmvc231/aix4/gui/x11r5/stal

2. Change the permissions to qmake to 755:

chmod 755 qmake

3. Edit qmake and specify the platform, the mode and the X11 version. This script invokes
the proper make file.

make -f <platform>/<mode>/Makefile<.x11r5>

Where
<platform> is: ibm, solaris, hp

 <mode> is: stal
<.x11r5> is needed if building for x11r5

For X11R5:
make -f solaris/stal/Makefile.x11r5

Examples for making a beta:
make -f ibm/stal/Makefile BETA=-DBETA
make -f solaris/stal/Makefile.x11r5 BETA=-DBETA

50 Building CMVC for UNIX

An actual example of the active statements in the qmake script (that is, lines that are not
commented) is shown below:

export PLATFORMOPT=solaris
export PLATFORMSTR=STR_Solaris26
export BUILDOPT=stal
export FLAGS="-D$PLATFORMSTR"
export X11R=.x11r5.solaris26

These variables will be used to invoke the make as follows:

nohup make -f $PLATFORMOPT/$BUILDOPT/Makefile$X11R FLAGS="$FLAGS"

4. It is recommended that if you want to leave the job running overnight or to have it running
in the background, use the command 'nohup' as follows:

For X11R5:
nohup make -f solaris/stal/Makefile.x11r5 > nohup.out &

This will result in a file named 'nohup.out' to be generated. If you want to see the
progress of the build, you can peek at this nohup.out file that is being generated by issuing
the command:

tail -f nohup.out

Once the build ends (the link step for the 'cmvc' executable), you can ctrl-c the process for
'tail', in order to get back to the prompt.

KNOWN BUILD PROBLEMS

� When compiling the db2 migration tools for Oracle in an AIX machine, it might be possible
to get the following error message:

PCC-F-NOERRFILE, unable to open error message file, facility PR2

To overcome this problem, verify that the ORACLE_HOME is properly defined in the file
Make.xxx.yyy.

� If the cmvchelp.msg or the cmvcui.msg files (message catalogs) have syntax errors, which
are most likely to be a lack of '\n\' at the end of the sentences, you will see the following
error message when compiling the code (such as):

$ make -f solaris/stal/Makefile.x11r5
or
$ make -f ibm/stal/Makefile

LANG=C; export LANG; \
gen_msg cmvchelp cmvchelp.msg > cmvchelp.msg1; \
gencat cmvchelp.cat cmvchelp.msg1; \
rm cmvchelp.msg1;
''' Error code 139
make: Fatal error: Command failed for target cmvchelp.cat'

 Building the CMVC GUI 51

� If the *.msg message catalogs have a double quote inside the help strings, then the com-
pilation of help.c will fail.

Known build problems for Solaris

� During the compilation of utilities.c, ignore the warnings:

"./hour.h", line 11: warning: initializer does not fit or is out of range
"./hourMask.h", line 11: warning: initializer does not fit or is out of range

COPYING THE OUTPUT FILES INTO THE SHIP DIRECTORY

It is not necessary to perform a "ship" step (as with the Client/Server code) to copy the output
files into a ship directory. In a sense, the current build directory tree is also the ship tree.

PERFORMING A SANITY TEST (BASED ON A
PSEUDO-INSTALLATION)

Perform the following steps to perform a sanity test of the CMVC GUI recently built:

1. Ensure that you are in the $TOP directory where the build took place.

2. Ensure that the DISPLAY environment is properly set, such as:

export DISPLAY=oem-sn13:�.�

3. Invoke the CMVC GUI "cmvc" executable from the current directory:

./cmvc

52 Building CMVC for UNIX

PACKAGING THE CMVC SERVER, LINE COMMANDS AND
GUI

This chapter describes how to package the CMVC server, line commands and GUI for UNIX.

The code for CMVC is distributed only as a full replacement of the code (also called, a
fullpak). That is, there are no delta updates to the installed code for CMVC. Whether you are
installing for the first time, or you are installing the CMVC code in a machine that already has
CMVC, the installation process is the same, and the amount of files to be copied is also the
same.

For AIX, HP-UX and Solaris, we provide the "tar" format in which the system administrator can
specify where to install the code. The default is "/usr/lpp/cmvc". One disadvantage is that
because this method bypasses the system utilities to install code in the appropriate operating
system, it is not possible to use system utilities to query if CMVC is installed, nor to uninstall
it. The uninstall process is simply the removal of the /usr/lpp/cmvc directory (or the appropriate
directory, if the default was not used) by using the "rm" command as root; however, the root
user needs to be very careful to avoid NOT deleting other directories or files that are not
related to CMVC.

For AIX, we also provide the installp format which can be used in conjunction with "smit" to
install the code. The advantage is that the AIX system utilities can be used to query if CMVC
is installed (lslpp) and "smit" can be used to uninstall the product. The disadvantage is that
the end user cannot specify another directory where to install the product, that is, via smit, you
can only use /usr/lpp/cmvc as the home for the CMVC code.

OVERVIEW OF PACKAGING FOR THE SERVER

The CMVC server for UNIX that the system administrator installs (from CD-ROM or from tape)
is the collection of files shown below. These files are placed together in a single installable
image, one per platform and per database (DB2, Oracle 7, Informix, and Sybase 4.9). For
example, one installable image for the DB2 server for AIX, one installable image for Oracle 7
for HP-UX.

CMVC UNIX files, which are built and shipped (ship/server) as part of the server (using
MAKE.cmvc with either '-b server' or '-b all') process described in this document:

 � directory: /usr/lpp/cmvc/bin

 Packaging the CMVC server, line commands and GUI 53

 age
 binToLong
 chfield
 cmvcarchive
 cmvcd
 cmvchost
 cmvcrestore
 dspmsg
 monitor
 notifyd
 resetAge
 sclean
 vcPath

� directory: /usr/lpp/cmvc/bind # only for database DB2

' # all files

� directory: /usr/lpp/cmvc/db2Convert # only for database DB2

' # all files

 � directory: /usr/lpp/cmvc/install

' # all files

 � directory: /usr/lpp/cmvc/samples

 server.samples
<all the samples listed in server.samples>

� directory: appropriate directory for Message Catalog (see bin/copy.server)

 cmvc.cat

OVERVIEW OF PACKAGING FOR THE CLIENT (LINE COMMANDS
AND GUI)

The CMVC client for UNIX that the system administrator installs (from CD-ROM or from tape)
and that the end-user uses is the collection of files shown in the next subsections. These files
are placed together in a single installable image, one per platform and per mode (standalone).
For example, one installable image for the Standalone client for AIX.

 Standalone files

� Motif GUI files, which are built by the process described in this document:

 – directory: /usr/lpp/cmvc/bin

 README.gui
 cmvc

54 Building CMVC for UNIX

 – directory: /usr/lpp/cmvc/samples

 Cmvc
 system.cmvcrc
 migResources

– directory: appropriate directory for Message Catalog (see bin/copy.gui.*)

 cmvcui.cat
 cmvchelp.cat

 – directory: /usr/lib/X11

 system.cmvcrc
XKeysymDB.cmvc # only for Solaris
motifbind.cmvc # only for Solaris

 – directory: /usr/lib/X11/app-defaults

 Cmvc

 – directory: /usr/include/X11/bitmaps

 cmvc.icon
 cmvc.error
 cmvc.info
 cmvc.question
 cmvc.tree

� CMVC UNIX line commands, which are built and shipped (ship/client) as part of the client
(using MAKE.cmvc with either '-b client' or '-b all').

 – directory: /usr/lpp/cmvc/bin

 Access
 Approval
 Approver
 Component
 Coreq
 Defect
 Environment
 Feature
 File
 Fix
 Host
 Level
 LevelMember
 Migrate
 Notify
 Release
 Report
 Size
 Test
 Track
 User

 Packaging the CMVC server, line commands and GUI 55

 Verify

 – directory: /usr/lpp/cmvc/samples

 client.samples
<all the samples listed in client.samples>

– directory: appropriate directory for Message Catalog (see bin/copy.client)

 cmvc.cat

� CMVC UNIX utilities, which are built (in src/adm) and shipped (in ship/client) as part of the
server (using MAKE.cmvc with either '-b server' or '-b all').

 – directory: /usr/lpp/cmvc/bin

 Fileimport
 Filemap
 Filemigrate
 dspmsg
 xecit

save.

PREPARING AIX SMIT INSTALLP IMAGES

To prepare the AIX smit installp images do:

1. Login as build.

2. Go where the installation tools are:

cd cmvc231/installp

3. For AIX 4 run:

bld4.installp

An individual preparation for the smit installp images is performed as follows (for CMVC
release 2.3, this is already in BldShip)

� For AIX 4, do:

BldShip4 db2 ���1 ���4
 ''''===> level

4. You can disregard the warning message:

End of inslist file: No such file or directory

56 Building CMVC for UNIX

PREPARING THE FILES TO GENERATE THE INSTALLATION IMAGES

The installation images for CMVC are prepared in installp format (only for AIX) and in tar
format for AIX, HP-UX and Solaris.

"Make" files are used to generate the installation images and they may need to be updated to
reflect the directories where the build took place.

For example, let's assume that the original make file for preparing the CMVC server for
Sybase had directory "sybase4" and now the directory that contains the new built code is
"sybase11", then the following file would need to be updated to reflect the new directory:

1. Login as build.

2. Change the directory where the installation files are located:

cd cmvc231/installp

3. Edit the following files and in the line that begins with "BUILDER_DIR", change the old
directory "sybase4" for the new directory "sybase11".

 � Makefile.SOLARIS.sybase

 � Makefile.SOLARIS.client

GENERATING INSTALLATION IMAGES IN TAR FORMAT

To generate the installation images in tar format which are applicable to all platforms do the
following:

1. Login as root into the appropriate platform. For example, to prepare the tar images for
HP-UX, you need to login as root in an HP-UX machine.

You need to be the "root" user id in order to prepare the installation images, because the
ownership of the files needs to be "bin:bin" and the permissions for the "cmvcd" execut-
able requires the "s" bit.

If you are already logged in as "build", then issue:

su - root

2. Change to the directory "installp". Assuming that the home directory of the "build" user id
in that machine is "/home/build", then do the following:

cd /home/build/cmvc231/installp

3. Execute the make file that will prepare the CMVC Client for Solaris:

make -f Makefile.SOLARIS.client

The generated tar files are:

 Packaging the CMVC server, line commands and GUI 57

 � Standalone client:

$HOMEBUILD/cmvc231/installp/solaris/tar/solstal.tar

� Message catalog for the GUI:

$HOMEBUILD/cmvc231/installp/solaris/tar/solstalm.tar

4. Execute the make file that will prepare the CMVC Server for Sybase on Solaris:

make -f Makefile.SOLARIS.sybase

You need to answer what type of home directory is used (it depends on the platform):

Select the HOME directory for build:
1 /home/build (AIX 3, AIX 4, SunOS, HP-UX 1�)
2 /export/home/build (Solaris)
3 /disk2/users/build (HP-UX 9)

The generated tar files are:

� Server for Sybase:

$HOMEBUILD/cmvc231/installp/solaris/tar/solsyb.tar

� Message catalog for the server and line commands:

$HOMEBUILD/cmvc231/installp/solaris/tar/solsrvm.tar

COLLECT THE INSTALLATION FILES IN A DISTRIBUTION MEDIA

Once the installation images are generated, then it is necessary to collect all the files related
to the installation process in a distribution media, such as a CD-ROM.

The directory where the generated files were placed from the previous step, also contains the
README file and the Korn shell script to interact with the end user (to ask which component
to install and in which directory) and then to proceed to un-tar the files. For example:

$ cd $HOMEBUILD/cmvc231/installp/solaris/tar/

$ ls -1
README.contents.tar.txt
README.inst.tape.txt
README.inst.tar.txt
solora7.tar
solsrvm.tar
solstal.tar
solstalm.tar
solsyb.tar
tarinstall.solaris'

You can copy all the above files (actually, you may want to include only the README called
"README.inst.tar.txt") into the distribution media. The file "README.inst.tar.txt" has the

58 Building CMVC for UNIX

installation instructions that the system administrator has to perform as user "root" to install
the CMVC code.

 Packaging the CMVC server, line commands and GUI 59

60 Building CMVC for UNIX

APPENDIX A. INTRODUCTION TO THE CHECKLISTS

This section consists of the following:

� A quick status checklist that in one page of text contains all the information about the
latest builds for UNIX only. This checklist can be maintained on-line.

1. Use a forward slash to indicate when an activity has begun.

This will allow you to see quickly which tasks need your attention.

2. Use a plus sign to indicate when an activity has ended.

� A set of generic checklists that can be used to keep track of all the build activities that are
necessary to produce CMVC 2.3.1 Client/Server and GUI for UNIX.

1. Fill in the platform field in the title of the table. (Recommendation: use red ink)
2. Fill in the host name in the second row in the header of the table. (Recommendation:

use red ink)
3. Use a forward slash to indicate when an activity has begun. (Recommendation: use

pencil)

This will allow you to see quickly which tasks need your attention.
4. Use a backward slash on top of the forward slash to form an X to indicate when an

activity has ended. (Recommendation: use pencil)

The explanation of all the steps that are needed to build, package and make tapes can be
found in their appropriate files in the directory /home/build/process.

 MISCELLANEOUS NOTES

� When extracting source code for AIX 4, HP-UX 10, or Solaris, use the following informa-
tion:

hostname: tcaix�5
userid: 21�
group id: 222

� The $HOMEBUILD directory depends on the host, such as in oem-ibm: /u/build

� The target directory depends on the combination of platform and database, such as in
Oracle 7.3 for AIX: $HOMEBUILD/cmvc231/aix4/cs/oracle73

� When doing remote login from AIX into other platforms, take the following into account:

 1. Solaris

Terminal type: xtermm
This is code already in the .profile

 Appendix A. Introduction to the checklists 61

 2. HP-UX

The following information is not in the profile and needs to be entered when asked:

Terminal type: ansi

When possible, you can telnet to an HP-UX box, set the DISPLAY variable back, then
issue:

hpterm &

62 Building CMVC for UNIX

APPENDIX B. CMVC FOR UNIX, BUILD AND PACKAGE
STATUS CHECKLIST

Use as reference the following real quick checklist status for the building of level 2.3.1.6 for
Solaris.

Subject: Status of CMVC CS/GUI builds for 2.3.1 Level 6
Date last updated: 22-Jan-2��1

''' Client/Server builds ''''' extract q s tar obj t t ftp c
m h s c s c e a i e d
a i r l r l s p n x r
k p v t v t t e t t o

 e m

AIX 421 oem-ppc3 db2v52 all
AIX 421 oem-ppc3 oracle734 server
AIX 421 oem-ppc3 informix72 server

HP1�.2� oem-hp1� oracle734 all
HP1�.2� oem-hp1� informx72 server
HP11.�� oem-hp14 informx73 all (runtime problems compile on oem-hp1�)

Sol 24 oem-sn�1 sybase49 server
Sol 251 oem-sn12 oracle73 server
Sol 26 oem-sn13 sybase11 all f5 d6 + + + / -

''' Motif GUI builds for CMVC ''' extract qmake

AIX 4.2 oem-ppc3 x11r5/stal
HPUX 1� oem-hp1� x11r5/stal
Solaris oem-sn13 x11r5/stal f5 d6 + + + / -

''' Notes about the Operating Systems ''''''''''''''''''''''''''''''''''

oem-ppc3 AIX 4.2.1: cmpc3db2 (DB2 UDB 5.2 FP 8)
cmpc3ora (7.3.4), cmpc3inf (7.2)

oemk25�a HP-UX 1�.2�: Oracle 7.3
oem-hp1� HP-UX 1�.2�: cmhp1�or (Oracle 7.3.4), cmhp1�in (Informix 7.23)
oem-hp14 HP-UX 11.��: cmhp14in (Informix 7.3)

oem-sn�1 Solaris 2.4: cmvcsn�1 (Sybase 4.9)
oem-sn12 Solaris 2.5: cmsn12or (Oracle 7.3.4)
oem-sn13 Solaris 2.6: cms13syb (Sybase 11.9.2)

''' Notes: '''
 ' To do level extracts, use the node: tcaix�5 (normal directories)

 Appendix B. CMVC for UNIX, build and package status checklist 63

 ' Use always "noNetLS" builds.
 ' Login as root in the native system to perform the preparation of the

tar images (in order for the chgrp to work properly).

''' Convention: '''
 "-" next activity to be performed
 "/" activity started
 "+" activity completed

64 Building CMVC for UNIX

APPENDIX C. CMVC GUI FOR UNIX, BUILD AND PACKAGE
CHECKLIST

The build for the GUI will be for Standalone, X11R5.

Figure 12. CMVC GUI for UNIX, Build and Package Checklist, Level: _____

Activity AIX

(________)

HP-UX

(________)

Solaris

(________)

logon as build

change to target directory

delete target build directory

extract full latest committed level

extract delta latest uncommitted
level

chmod 755 qmake

update qmake for BETA or
normal, x11r5

qmake clean

qmake

su - root

cd
$HOMEBUILD/cmvc231/installp

make -f
Makefile.PLATFORM.client

test code

 Appendix C. CMVC GUI for UNIX, Build and Package Checklist 65

66 Building CMVC for UNIX

APPENDIX D. CMVC CLIENT/SERVER UNIX, BUILD AND
PACKAGE CHECKLIST

Figure 13 (Page 1 of 2). CMVC Client/Server UNIX, Build and Package Checklist, Level:

Activity oracle

(________)

all/server

informix

(________)

all/server

db2v5

(________)

all/server

sybase

(________)

all/server

logon as build

change to target directory

delete target build directory

extract full latest committed level

extract delta latest uncommitted
level

chmod 755 qmake

update qmake and specify build
options

qmake clean

qmake

qmake ship

-- prepare installp (obj) images
for AIX --

cd
$HOMEBUILD/cmvc231/installp

prepare installp images:
bld.all.images4

 Appendix D. CMVC Client/Server UNIX, Build and Package Checklist 67

Figure 13 (Page 2 of 2). CMVC Client/Server UNIX, Build and Package Checklist, Level:

Activity oracle

(________)

all/server

informix

(________)

all/server

db2v5

(________)

all/server

sybase

(________)

all/server

-- prepare tar images for others
--

su - root (ksh, set -o vi)

cd
$HOMEBUILD/cmvc231/installp

make -f
Makefile.PLATFORM.DATABASE

make -f
Makefile.PLATFORM.client

perform quick sanity test

perform FVT test

prepare backup tapes with install
images

place install images in external
ftp site

68 Building CMVC for UNIX

 APPENDIX E. BIBLIOGRAPHY

For more information on how to use CMVC, you can consult the following manuals and publi-
cations:

SC�9-1596-�1 IBM CMVC Client Installation and Configuration
SC�9-1597-�1 IBM CMVC User's Reference
SC�9-1631-�2 IBM CMVC Server Administration and Installation
SC�9-1633-�� IBM CMVC Concepts
SC�9-1635-�1 IBM CMVC Commands Reference

HOW TO GET ELECTRONIC COPIES OF MANUALS AND TECHNICAL
REPORTS

Many of the manuals and technical reports mentioned in this document can be downloaded as
follows:

� From the Internet (open to everyone).

 Internet

Web Home Page

Not available.

 FTP

You can download the PDF version of the manuals from our external FTP site, by doing:

1. ftp ftp.software.ibm.com

2. login as 'anonymous' and for password give your email address.

3. cd ps/products/cmvc/doc/pdf

 4. prompt

 5. binary

6. mget *.pdf

 7. quit

 Appendix E. Bibliography 69

70 Building CMVC for UNIX

APPENDIX F. COPYRIGHTS, TRADEMARKS AND SERVICE
MARKS

The following terms used in this technical report, are trademarks or service marks of the indi-
cated companies:

+---------------------+---+
TRADEMARK,	COMPANY
REGISTERED	
TRADEMARK OR	
SERVICE MARK	
+---------------------+---+	
AIX, OS/2, IBM,	IBM Corporation
DB2, CMVC,	
TeamConnection	
+---------------------+---+	
UNIX	X/Open Co., Ltd.
+---------------------+---+	
NetLS	Gradient Technologies, Inc.
+---------------------+---+	
Motif, DFS	Open Software Foundation, Inc.
+---------------------+---+	
INFORMIX	Informix Inc.
+---------------------+---+	
ORACLE	Oracle Corp.
+---------------------+---+	
SYBASE	Sybase Inc.
+---------------------+---+	
NFS, SunOS, Solaris	Sun Microsystems Inc.
Sparc, SPARCstation	
+---------------------+---+	
HP-UX, SoftBench	Hewlett-Packard Company
+---------------------+---+	
Microsoft, Windows,	Microsoft Corporation
+---------------------+---+	
AFS	Transarc Corp
+---------------------+---+

END OF DOCUMENT

 Appendix F. Copyrights, Trademarks and Service marks 71

